Applied Physics B

, 124:191 | Cite as

3D transformations of light fields in the focal region implemented by diffractive axicons

  • Svetlana N. KhoninaEmail author
  • Alexey P. Porfirev


Three-dimensional transformations of light fields were investigated, including such characteristics as intensity distribution and polarisation state, in the focal region at tight focusing and in the paraxial regime due to the lens apodisation by a diffraction axicon with different structures (linear, binary, spiral axicons). Theoretical analysis demonstrates the different possibilities of such transformations and significant differences in results depending on the focusing modes (sharp or paraxial). The experimental results obtained were in good agreement with the simulation results, demonstrating that optical systems employing lens–axicon combinations may be useful in the laser trapping of nano- and microparticles, optical microscopy, and improvement of high-capacity information storage techniques.



The theoretical investigation was supported under the Russian Foundation for Basic Research (Grants 16-29-11698, 16-07-00825, 17-42-630008), the numerical investigation was supported under the Federal Agency of Scientific Organizations (agreement No. 007-GZ/C3363/26), and the experimental investigation was supported by Russian Federation Presidential grant for support of the leading scientific schools (NSh-6307.2018.8).


  1. 1.
    M. Dienerowitz, M. Mazilu, K. Dholakia, Optical manipulation of nanoparticles: a review. J. Nanophotonics 2(1), 021875 (2008). CrossRefGoogle Scholar
  2. 2.
    M. Martínez-Corral, G. Saavedra, Chap. 1. The resolution challenge in 3D optical microscopy. Prog. Opt. 53, 1–67 (2009). CrossRefGoogle Scholar
  3. 3.
    E. Walker, A. Dvornikov, K. Coblentz, S. Esener, P. Rentzepis, Toward terabyte two-photon 3D disk. Opt. Express 15(19), 12264–12276 (2007). ADSCrossRefGoogle Scholar
  4. 4.
    N. Bokor, N. Davidson, Toward a spherical spot distribution with 4pi focusing of radially polarized light. Opt. Lett. 29(17), 1968–1970 (2004). ADSCrossRefGoogle Scholar
  5. 5.
    N. Bokor, N. Davidson, A three dimensional dark focal spot uniformly surrounded by light. Opt. Commun. 279(2), 229–234 (2007). ADSCrossRefGoogle Scholar
  6. 6.
    Z. Chen, D. Zhao, 4Pi focusing of spatially modulated radially polarized vortex beams. Opt. Lett. 37(8), 1286–1288 (2012). ADSCrossRefGoogle Scholar
  7. 7.
    S.N. Khonina, I. Golub, Engineering the smallest 3D symmetrical bright and dark focal spots. J. Opt. Soc. Am. A 30(10), 2029–2033 (2013). ADSCrossRefGoogle Scholar
  8. 8.
    S.N. Khonina, A.V. Ustinov, S.G. Volotovsky, Shaping of spherical light intensity based on the interference of tightly focused beams with different polarizations. Opt. Laser Technol. 60, 99–106 (2014). ADSCrossRefGoogle Scholar
  9. 9.
    W. Chen, Q. Zhan, Three-dimensional focus shaping with cylindrical vector beams. Opt. Commun. 265(2), 411–417 (2006). ADSCrossRefGoogle Scholar
  10. 10.
    T.G. Jabbour, S.M. Kuebler, Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates. Opt. Express 14(3), 1033–1043 (2006). ADSCrossRefGoogle Scholar
  11. 11.
    X. Gao, J. Wang, H. Gu, W. Xu, Focusing properties of concentric piecewise cylindrical vector beam. Optik 118(6), 257–265 (2007). ADSCrossRefGoogle Scholar
  12. 12.
    S.N. Khonina, S.G. Volotovsky, Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures. J. Opt. Soc. Am. A 27(10), 2188–2197 (2010). ADSCrossRefGoogle Scholar
  13. 13.
    S.N. Khonina, N.L. Kazanskiy, S.G. Volotovsky, Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system. J. Mod. Opt. 58(9), 748–760 (2011). ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    R. Dorn, S. Quabis, G. Leuchs, Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003). ADSCrossRefGoogle Scholar
  15. 15.
    N. Davidson, N. Bokor, High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt. Lett. 29(12), 1318–1320 (2004). ADSCrossRefGoogle Scholar
  16. 16.
    G.M. Lerman, U. Levy, Effect of radial polarization and apodization on spot size under tight focusing conditions. Opt. Express 16(7), 4567–4581 (2008). ADSCrossRefGoogle Scholar
  17. 17.
    H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photonics 2, 501–505 (2008). CrossRefGoogle Scholar
  18. 18.
    S.N. Khonina, D.A. Savelyev, High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. JETP 117(4), 623–630 (2013). ADSCrossRefGoogle Scholar
  19. 19.
    A.P. Porfirev, A.V. Ustinov, S.N. Khonina, Polarization conversion when focusing cylindrically polarized vortex beams. Sci. Rep. 6, 6 (2016). CrossRefGoogle Scholar
  20. 20.
    A.H.S. Holbourn, Angular momentum of circularly polarized light. Nature 137, 31 (1936). ADSCrossRefGoogle Scholar
  21. 21.
    N.B. Simpson, K. Dholakia, L. Allen, M.J. Padgett, Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22(1), 52–54 (1997). ADSCrossRefGoogle Scholar
  22. 22.
    M.R. Dennis, K. O’Holleran, M.J. Padgett, Singular optics, Optical vortices and polarization singularities. Prog. Opt. 53, 293–363 (2009). CrossRefGoogle Scholar
  23. 23.
    A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161–204 (2011). CrossRefGoogle Scholar
  24. 24.
    D.L. Andrews, M. Babiker, The angular momentum of light (Cambridge University Press, Cambridge, 2012)CrossRefGoogle Scholar
  25. 25.
    S.N. Khonina, S.G. Volotovsky, Application axicons in a large-aperture focusing system. Opt. Mem. Neural Network 23(4), 201–217 (2014). CrossRefGoogle Scholar
  26. 26.
    S.N. Khonina, A.P. Porfirev, A.V. Ustinov, Diffractive axicon with tunable fill factor for focal ring splitting. Proc. SPIE 10233, 102331P (2017). CrossRefGoogle Scholar
  27. 27.
    A.V. Ustinov, A.P. Porfir’ev, S.N. Khonina, Effect of the fill factor of an annular diffraction grating on the energy distribution in the focal plane. J. Opt. Technol. 84(9), 580–587 (2017). CrossRefGoogle Scholar
  28. 28.
    B. Richards, E. Wolf, Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system. Proc. R. Soc. A 253, 358–379 (1959). ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    S.F. Pereira, A.S. van de Nes, Superresolution by means of polarisation, phase and amplitude pupil masks. Opt. Commun. 234, 119–124 (2004). ADSCrossRefGoogle Scholar
  30. 30.
    L.E. Helseth, Optical vortices in focal regions. Opt. Commun. 229, 85–91 (2004). ADSCrossRefGoogle Scholar
  31. 31.
    P. Belanger, M. Rioux, Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam. Appl. Opt. 17(7), 1080–1086 (1978). ADSCrossRefGoogle Scholar
  32. 32.
    C.J.R. Sheppard, Jones and stokes parameters for polarization in three dimensions. Phys. Rev. A 90(2), 023809 (2014). ADSCrossRefGoogle Scholar
  33. 33.
    S.N. Khonina, V.V. Kotlyar, V.A. Soifer, M.V. Shinkaryev, G.V. Uspleniev, Trochoson, Opt. Commun. 91(3–4), 158–162 (1992). ADSCrossRefGoogle Scholar
  34. 34.
    J.H. McLeod, The axicon: A new type of optical element. J. Opt. Soc. Am. 44, 592–597 (1954). ADSCrossRefGoogle Scholar
  35. 35.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, Mineola, 1972)zbMATHGoogle Scholar
  36. 36.
    J.J. Stamnes, Waves, rays, and the method of stationary phase. Opt. Express 10(16), 740–751 (2002). ADSCrossRefGoogle Scholar
  37. 37.
    J.H. Lin, M.D. Wei, H.H. Liang, K.H. Lin, W.F. Hsieh, Generation of supercontinuum bottle beam using an axicon. Opt. Express 15(6), 2940–2946 (2007). ADSCrossRefGoogle Scholar
  38. 38.
    M.D. Wei, W.L. Shiao, Y.T. Lin, Adjustable generation of bottle and hollow beams using an axicon. Opt. Commun. 248(1–3), 7–14 (2015). ADSCrossRefGoogle Scholar
  39. 39.
    S.N. Khonina, V.V. Kotlyar, V.A. Soifer, J. Lautanen, M. Honkanen, J. Turunen, Generation of Gauss-Hermite modes using binary DOEs. Proc. SPIE 4016, 234–239 (1999). ADSCrossRefGoogle Scholar
  40. 40.
    M. Beresna, M. Gecevicius, P.G. Kazansky, Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass. Opt. Mater. Express 1(4), 783–795 (2011). ADSCrossRefGoogle Scholar
  41. 41.
    V.G. Shvedov, C. Hnatovsky, N. Shostka, W. Krolikowski, Generation of vector bottle beams with a uniaxial crystal. J. Opt. Soc. Am. B 30(1), 1–6 (2013). ADSCrossRefGoogle Scholar
  42. 42.
    V.G. Shvedov, C. Hnatovsky, N. Eckerskorn, A.V. Rode, W. Krolikowski, Polarization-sensitive photophoresis. Appl. Phys. Lett. 101(5), 051106 (2012). ADSCrossRefGoogle Scholar
  43. 43.
    V. Shvedov, A.R. Davoyan, C. Hnatovsky, N. Engheta, W. Krolikowski, A long-range polarization-controlled optical tractor beam. Nat. Photonics 8, 846–850 (2014). ADSCrossRefGoogle Scholar
  44. 44.
    M.-C. Zhong, L. Gong, D. Li, J.-H. Zhou, Z.-Q. Wang, Y.-M. Li, Optical trapping of core-shell magnetic microparticles by cylindrical vector beams. Appl. Phys. Lett. 105(18), 181112 (2014). ADSCrossRefGoogle Scholar
  45. 45.
    F.P. Wu, B. Zhang, Z.L. Liu, Y. Tang, N. Zhang, Optical trapping forces of a focused azimuthally polarized Bessel-Gaussian beam on a double-layered sphere. Opt. Commun. 405, 96–100 (2017). ADSCrossRefGoogle Scholar
  46. 46.
    T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Forces in optical tweezers with radially and azimuthally polarized trapping beams. Opt. Lett. 33(2), 122–124 (2008). ADSCrossRefGoogle Scholar
  47. 47.
    B.-L. Yao, S.-H. Yan, T. Ye, W. Zhao, Optical trapping of double-ring radially polarized beam with improved axial trapping efficiency. Chin. Phys. Lett. 27(10), 108701 (2010). ADSCrossRefGoogle Scholar
  48. 48.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986). ADSCrossRefGoogle Scholar
  49. 49.
    A.P. Porfirev, R.V. Skidanov, Generation of an array of optical bottle beams using a superposition of Bessel beams. Appl. Opt. 52(25), 6230–6238 (2013). ADSCrossRefGoogle Scholar
  50. 50.
    Z. Kuang, W. Perrie, S.P. Edwardson, E. Fearon, G. Dearden, Ultrafast laser parallel microdrilling using multiple annular beams generated by a spatial light modulator. J. Phys. D: Appl. Phys. 47(11), 115501 (2014). ADSCrossRefGoogle Scholar
  51. 51.
    J.J.J. Nivas, F. Cardano, Z. Song, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso, Surface structuring with polarization-singular femtosecond laser beams generated by a q-plate. Sci. Rep. 7, 42142 (2017). ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Technical CyberneticsSamara National Research UniversitySamaraRussia
  2. 2.Laser Measurements LaboratoryImage Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of SciencesSamaraRussia
  3. 3.Micro- and Nanotechnologies LaboratoryImage Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of SciencesSamaraRussia

Personalised recommendations