Advertisement

Applied Physics B

, 124:187 | Cite as

Planar liquid volume fraction measurements in air-blast sprays using SLIPI technique with numerical corrections

  • Aniket P. Kulkarni
  • D. Deshmukh
Article
  • 44 Downloads

Abstract

A methodology to improve the accuracy of liquid volume fraction measurement in a dense spray is presented. A combination of experimental technique, structured laser illumination and planar imaging (SLIPI) and numerical corrections is used to overcome losses in conventional planar laser-induced fluorescence (PLIF) imaging. A quantitative distribution of liquid volume fraction in a plane is obtained using corrected SLIPI–PLIF signal and PDIA (particle/droplet imaging analysis) technique. The methodology is applied to air-blast sprays for GLRs (gas to liquid mass ratio) 1, 2.5 and 4. The effect of multiple scattering is significantly high in the conventional PLIF signal imaging. A hollow cone spray geometry is observed at a GLR of 1 using the improved imaging technique. An increase in GLR from 1 to 4 leads to uniform distribution of liquid in a spray plane. A significant contribution of multiple scattering (\(\sim\) 62%) is observed in the conventional PLIF signal at GLR 4 along the axis of the spray. The symmetry in the SLIPI–PLIF signal is restored using the numerical corrections. The liquid volume fraction measurements from SLIPI–PLIF technique are further improved with the numerical corrections.

Notes

Funding

Funding was provided by SERB-DST India (Grant no. SB/S3/MMER/0028/2013).

References

  1. 1.
    R. Abu-Gharbieh, J.L. Persson, M. Försth, A. Rosén, A. Karlström, T. Gustavsson, Compensation method for attenuated planar laser images of optically dense sprays. Appl. Opt. 39(8), 1260–1267 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    E. Berrocal, E. Kristensson, P. Hottenbach, M. Aldén, G. Grünefeld, Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging. Appl. Phys. B 109(4), 683–694 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    E. Berrocal, E. Kristensson, M. Richter, M. Linne, M. Aldén, Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays. Opt. Express 16(22), 17870–17881 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    C.T. Brown, V.G. McDonnell, D.G. Talley, Accounting for laser extinction, signal attenuation, and secondary emission while performing optical patternation in a single plane. In Fifteenth Annual Conference on Liquid Atomization and Spray Systems, Madison, WI, USA (2002)Google Scholar
  5. 5.
    C. Chartier, J. Sjoholm, E. Kristensson, O. Andersson, M. Richter, B. Johansson, M. Alden, Air-entrainment in wall-jets using SLIPI in a heavy-duty diesel engine. SAE Int. J. Engines 5, 1684–1692 (2012).  https://doi.org/10.4271/2012-01-1718 CrossRefGoogle Scholar
  6. 6.
    A. Coghe, G.E. Cossali, Quantitative optical techniques for dense sprays investigation: a survey. Opt. Lasers Eng. 50(1), 46–56 (2012)CrossRefGoogle Scholar
  7. 7.
    C.S. Cooper, N.M. Laurendeau, Comparison of laser-induced and planar laser-induced fluorescence measurements of nitric oxide in a high-pressure, swirl-stabilized, spray flame. Appl. Phys. B 70(6), 903–910 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    D. Deshmukh, R.V. Ravikrishna, A method for measurement of planar liquid volume fraction in dense sprays. Exp. Therm. Fluid Sci. 46, 254–258 (2013)CrossRefGoogle Scholar
  9. 9.
    T.D. Fansler, S.E. Parrish, Spray measurement technology. A review. Meas. Sci. Technol. 26(1), 012002 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    R.K. Hanson, J.M. Seitzman, P.H. Paul, Planar laser-fluorescence imaging of combustion gases. Appl. Phys. B 50(6), 441–454 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    H. Koh, J. Jeon, D. Kim, Y. Yoon, J.-Y. Koo, Analysis of signal attenuation for quantification of a planar imaging technique. Meas. Sci. Technol. 14(10), 18–29 (2003)CrossRefGoogle Scholar
  12. 12.
    K. Kohse-Höinghaus, Quantitative laser-induced fluorescence: some recent developments in combustion diagnostics. Appl. Phys. B 50(6), 455–461 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    E. Kristensson, Structured Laser illumination planar imaging: SLIPI applications for spray diagnostics. Ph.D. Thesis, Lund University, Lund, 2012Google Scholar
  14. 14.
    E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Aldén, M. Linne, Analysis of multiple scattering suppression using structured laser illumination planar imaging in scattering and fluorescing media. Opt. Express 19(14), 13647–13663 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A.P. Kulkarni, D. Deshmukh, Spatial drop-sizing in airblast atomization—an experimental study. At. Sprays 27(11), 949–961 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Labs, T. Parker, Multiple-scattering effects on infrared scattering measurements used to characterize droplet size and volume fraction distributions in diesel sprays. Appl. Opt. 44(28), 6049–6057 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    J. Labs, T. Parker, Two-dimensional droplet size and volume fraction distributions from the near-injector region of high-pressure diesel sprays. At. Sprays 16, 843–855 (2006)CrossRefGoogle Scholar
  18. 18.
    A.H. Lefebvre, Airblast atomization. Prog. Energy Combust. Sci. 6(3), 233261 (1980)CrossRefGoogle Scholar
  19. 19.
    A. Lefebvre, Atomization and Sprays (CRC Press, Boca Raton, 1988)CrossRefGoogle Scholar
  20. 20.
    M. Linne, Imaging in the optically dense regions of a spray: a review of developing techniques. Prog. Energy Combust. Sci. 39(5), 403–440 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Liu, F. Liu, Y. Mao, M. Yong, X. Gang, Experimental investigation of performance of an air blast atomizer by planar laser sheet imaging technique. J. Eng. Gas Turbines Power 136(2), 021601 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.N. Mishra, Droplet size, concentration, and temperature mapping in sprays using SLIPI-based techniques, Ph.D. Thesis, Lund University, Lund (2018)Google Scholar
  23. 23.
    Y.N. Mishra, E. Kristensson, E. Berrocal, Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging. Opt. Express 22(4), 4480–4492 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Y.N. Mishra, E. Kristensson, M. Koegl, J. Jönsson, L. Zigan, E. Berrocal, Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays. Exp. Fluids 58(9), 110 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.N. Mishra, F.A. Nada, S. Polster, E. Kristensson, E. Berrocal, Thermometry in aqueous solutions and sprays using two-color LIF and structured illumination. Opt. Express 24(5), 4949–4963 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    J.V. Pastor, J.J. Lopez, J.E. Juliá, J.V. Benajes, Planar laser-induced fluorescence fuel concentration measurements in isothermal diesel sprays. Opt. Express 10(7), 309–323 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    V. Sick, B. Stojkovic, Attenuation effects on imaging diagnostics of hollow-cone sprays. Appl. Opt. 40(15), 2435–2442 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    J. Sjöholm, C. Chartier, E. Kristensson, E. Berrocal, Y. Gallo, M. Richter, Ö. Andersson, M. Aldén, B. Johansson, Quantitative in-cylinder fuel measurements in a heavy duty diesel engine using structured laser illumination planar imaging (SLIPI). In COMODIA 2012, MD2, vol 3 (2012)Google Scholar
  29. 29.
    B.D. Stojkovic, V. Sick, Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques. Appl. Phys. B 73(1), 75–83 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    D. Talley, J. Verdieck, S. Lee, V. McDonell, G. Samuelsen. Accounting for laser sheet extinction in applying PLLIF to sprays. In 34th Aerospace Sciences Meeting and Exhibit, p. 469  (1996).  https://doi.org/10.2514/6.1996-469
  31. 31.
    K. Verbiezen, R.J.H. Klein-Douwel, A.P. Van Vliet, A.J. Donkerbroek, W.L. Meerts, N.J. Dam, J.J. Ter Meulen, Attenuation corrections for in-cylinder no lif measurements in a heavy-duty diesel engine. Appl. Phys. B 83(1), 155–166 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    P. Walker, W.H. Tarn, CRC Handbook of Metal Etchants (CRC Press, Boca Raton, 1990)Google Scholar
  33. 33.
    F. Xing, A. Kumar, Y. Huang, S. Chan, C. Ruan, S. Gu, X. Fan, Flameless combustion with liquid fuel: a review focusing on fundamentals and gas turbine application. Appl. Energy 193, 28–51 (2017)CrossRefGoogle Scholar
  34. 34.
    J. Ye, P.R. Medwell, E. Varea, B.B. Dally, H.G. Pitsch, An experimental study on MILD combustion of prevaporised liquid fuels. Appl. Energy 151, 93–101 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Spray and Combustion Laboratory, Discipline of Mechanical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations