Advertisement

Applied Physics B

, 124:192 | Cite as

Incoherently coupled Gaussian soliton pairs in biased photorefractive crystal having both the linear and quadratic electro-optic effect

  • Aavishkar Katti
Article

Abstract

Propagation characteristics of incoherently coupled Gaussian soliton pairs are studied in photorefractive media having both the linear and electro-optic effect. Applying paraxial ray approximation, a very large family of bright–bright Gaussian soliton pairs in photorefractive crystals having both the linear and quadratic electro-optic effect has been identified. These composite solitons can exist only when the carrier beams have the same polarization, wavelength and are mutually incoherent. It is shown that the incoherently coupled soliton pair cannot propagate as a stationary entity if its components have different spatial widths. A wide parameter space of spatial width of the soliton pair and its power has been found where it can exist as a stationary entity. The paraxial theory shows that the identified family of soliton pairs is stable. An interesting finding is that of bistable states in this system for the degenerate case of the power being same for both components of the soliton pair. A relevant example has been taken for illustration of our results where the crystal is PMN-0.33PT.

References

  1. 1.
    M. Segev, B. Crosignani, A. Yariv, B. Fischer, Spatial solitons in photorefractive media. Phys. Rev. Lett. 68(7), 923–926 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    G.C. Duree et al., Observation of self-trapping of an optical beam due to the photorefractive effect, Phys. Rev. Lett. 71(4), 533–536 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    D.N. Christodoulides, M.I. Carvalho, Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12(9), 1628 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    G.C. Valley, M. Segev, B. Crosignani, A. Yariv, M.M. Fejer, M.C. Bashaw, Dark and bright photovoltaic spatial solitons. Phys. Rev. A 50(6), R4457 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    J.S. Liu, K.Q. Lu, Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection. J. Opt. Soc. Am. B-Optical Phys. 16(4), 550–555 (1999)CrossRefGoogle Scholar
  6. 6.
    A. Katti, R.A. Yadav, Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect. Phys. Lett. Sect. A Gen. At. Solid State Phys. 381(3), 166–170 (2017)MathSciNetGoogle Scholar
  7. 7.
    A. Katti, R.A. Yadav, Incoherently coupled photorefractive spatial solitons supported by pyroelectric effects. J. Nonlinear Opt. Phys. Mater. 26(1), 1750002 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    S. Konar, S. Jana, S. Shwetanshumala, Incoherently coupled screening photovoltaic spatial solitons in biased photovoltaic photorefractive crystals. Opt. Commun. 273(2), 324–333 (May 2007)ADSCrossRefGoogle Scholar
  9. 9.
    K. Zhan, C. Hou, H. Tian, Y. Zhang, Incoherently coupled Gaussian soliton pairs in biased centrosymmetric photorefractive crystals. Opt. Laser Technol. 42(7), 1176–1179 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    L. Keqing, Z. Yanpeng, T. Tiantong, L. Bo, Incoherently coupled steady-state soliton pairs in biased photorefractive-photovoltaic materials. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 64, 056603 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    A. Katti, R.A. Yadav, D.P. Singh, Theoretical investigation of incoherently coupled solitons in centrosymmetric photorefractive crystals. Opt. Int. J. Light Electron Opt. 136, 89–106 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Hao, Q. Wang, C. Hou, Incoherently coupled spatial soliton pairs due to both the linear and quadratic electro-optic effects. J. Mod. Opt. 62(3), 231–237 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Hao, C. Hou, X. Wang, Q. Wang, H. Mu, Coherently coupled bright-bright screening soliton pairs in biased centrosymmetric photorefractive crystals. Opt. J. Light Electron Opt. 127(15), 5928–5934 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Katti, R.A. Yadav, Coupled spatial solitons in photorefractive multiple quantum well planar waveguides,” in 13th International Conference on Fiber Optics and Photonics, 2016, p. Tu3D.3Google Scholar
  15. 15.
    A. Katti, Coherently coupled solitons in photorefractive media due to pyroelectric effect. J. Nonlinear Opt. Phys. Mater. 26(4), 1750044 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    M. Segev, aJ. Agranat, Spatial solitons in centrosymmetric photorefractive media. Opt. Lett. 22(17), 1299–1301 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    L. Hao, Q. Wang, C. Hou, Spatial solitons in biased photorefractive materials with both the linear and quadratic electro-optic effects. J. Mod. Opt. 61(15), 1236–1245 (May 2014)ADSCrossRefGoogle Scholar
  18. 18.
    J.A. van Raalte, Linear electro-optic effect in ferroelectric KTN. J. Opt. Soc. Am. 57(5), 671 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Lu, Z.-Y. Cheng, S.-E. Park, S.-F. Liu, Q. Zhang, Linear electro-optic effect of 0.88Pb(Zn1/3 Nb2/3)O3–0.12PbTiO3 single crystal. Jpn. J. Appl. Phys. 39(1), 141–145 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    S.-E. Park, T.R. Shrout. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers—Ultrasonics, ferroelectrics and frequency control, IEEE Trans 44(5), 1140–1147 (1997)Google Scholar
  21. 21.
    A. Katti, R.A. Yadav, A. Prasad, Bright optical spatial solitons in photorefractive waveguides having both the linear and quadratic electro-optic effect, Wave Motion, 77, 64–76, (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Katti, R.A. Yadav, Coupling effects for grey separate spatial solitons in a biased series photorefractive crystal circuit with both the linear and quadratic electro-optic effects. Opt. Quantum Electron. 49(1), 36 (2017)CrossRefGoogle Scholar
  23. 23.
    Q. Jiang, Y. Su, H. Nie, Z. Ma, Y. Li, Separate spatial soliton pairs in a biased series photorefractive crystal circuit with both the linear and quadratic electro-optic effects. J. Mod. Opt. 64(6), 609–615 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Q. Jiang, Y. Su, H. Nie, Z. Ma, Y. Li, New type gray spatial solitons in two-photon photorefractive media with both the linear and quadratic electro-optic effects. J. Nonlinear Opt. Phys. Mater. 26(1), 1750006 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    S.A. Akhmanov, A.P. Sukhoruk, R.V. Khokhlov, Self-focusing and difraction of light beams in a nonlinear medium. Sov. Phys. Uspekhi-USSR 10(5), 609–636 (1968)ADSCrossRefGoogle Scholar
  26. 26.
    D. Anderson, Variational approach to nonlinear pulse propagation in optical fibers, Phys. Rev. A, 27(6), 3135–3145 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    S.N. Vlasov, V.A. Petrishchev, V.I. Talanov, Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 14(9), 1062–1070 (1974)ADSCrossRefGoogle Scholar
  28. 28.
    V. Skarka, V.I. Berezhiani, R. Miklaszewski, Spatiotemporal soliton propagation in saturating nonlinear optical media. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 56(1), 1080–1087 (1997)ADSGoogle Scholar
  29. 29.
    Z. Liu, W. Zang, J. Tian, W. Zhou, C. Zhang, G. Zhang, Analysis of Z-scan of thick media with high-order nonlinearity by variational approach. Opt. Commun. 219(1–6), 411–419 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Huang, Q. Guo, J. Cao, Optical beams in lossy non-local Kerr media. Opt. Commun. 261(1), 175–180 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    P. Tchofo Dinda, A.B. Moubissi, K. Nakkeeran, A collective variable approach for dispersion-managed solitons. J. Phys. A. Math. Gen. 34(10), L103–L110 (2001)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    J.H.B. Nijhof, W. Forysiak, N.J. Doran, The averaging method for finding exactly periodic. IEEE J. Sel. Top. Quantum Electron. 6(2), 330–336 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    J.N. Kutz, S.D. Koehler, L. Leng, K. Bergman, Analytic study of orthogonally polarized solitons interacting in highly birefringent optical fibers. J. Opt. Soc. Am. B Opt. Phys. 14(3), 636–642 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    X. Wan, D. Wang, X. Zhao, H. Luo, H.L. Chan, C.L. Choy, Electro-optic characterization of tetragonal (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals by a modified Sénarmont setup. Solid State Commun. 134(8), 547–551 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    R. Zhang, B. Jiang, W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals. J. Appl. Phys. 90(7), 3471–3475 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBanasthali VidyapithNewai (Tonk)India

Personalised recommendations