Applied Physics B

, 124:180 | Cite as

Novel system for simultaneously measuring the thickness and refractive index of a transparent plate with two optical paths

  • Chien-Sheng LiuEmail author
  • Tse-Yen Wang
  • Yu-Ta Chen


This study designs and characterizes a novel optical system for simultaneously measuring the thickness (> 1 mm) and refractive index of a transparent plate with two optical paths. The proposed optical system is based on triangulation methods. In contrast to exiting optical system based on triangulation methods for simultaneous measurements of thickness and refractive index of a transparent plate, the proposed optical system can measure a greater thickness with a simpler structure and lower cost. The two optical paths are combined using a self-written measurement processing algorithm to simultaneously calculate the thickness and refractive index. The principle and measurement methodology of the proposed optical system are analyzed and explained. The performance of the proposed optical system is then verified and evaluated experimentally using a laboratory-built prototype. The experimental results show that the measured thicknesses and refractive indexes for Sample B (the thickness > 1 mm) are in good agreement with those determined by a commercial instrument with the maximum deviation of 0.019% for the thickness d and 0.007% for the refractive index n, respectively.



The authors gratefully acknowledge the financial support provided to this study by the Ministry of Science and Technology of Taiwan under Grant Nos. MOST 106-2628-E-194-001-MY3, 106-2622-E-194-005-CC3, 106-2622-E-194-004-CC2, 106-2218-E-194-002, 106-3114-8-194-001, 105-2221-E-194-013-MY5, 105-2218-E-194-004, 105-2218-E-194-003, and 103-2221-E-194-006-MY3.


  1. 1.
    I.K. Ilev, R.W. Waynant, K.R. Byrnes, J.J. Anders, Dual-confocal fiber-optic method for absolute measurement of refractive index and thickness of optically transparent media. Opt. Lett. 27(19), 1693–1695 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    G. Coppola, P. Ferraro, M. Iodice, S.D. Nicola, Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer. Appl. Opt. 42(19), 3882–3887 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    T. Fukano, I. Yamaguchi, Separation of measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope. Appl. Opt. 38(19), 4065–4073 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    S.A. Reza, M. Qasim, Nonbulk motion system for simultaneously measuring the refractive index and thickness of a sample using tunable optics and spatial signal processing-based Gaussian beam imaging. Appl. Opt. 55(2), 368–378 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Kang, C.B. Lee, J.Y. Joo, S.K. Lee, Phase-locked loop based on machine surface topography measurement using lensed fibers. Appl. Opt. 50, 460–467 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    C.S. Liu, Z.Y. Wang, Y.C. Chang, Design and characterization of high-performance autofocusing microscope with zoom in/out functions. Appl. Phys. B 121(1), 69–80 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C.S. Liu, S.H. Jiang, Precise autofocusing microscope with rapid response. Opt. Lasers Eng. 66, 294–300 (2015)CrossRefGoogle Scholar
  8. 8.
    C.S. Liu, S.H. Jiang, Design and experimental validation of novel enhanced-performance autofocusing microscope. Appl. Phys. B 117(4), 1161–1171 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    S. Srisuwan, C. Sirisathitkul, S. Danworaphong, Validiation of photometric ellipsometry for refractive index and thickness measurements. MAPAN-J. Metrol. Soc. India 30(1), 31–36 (2015)Google Scholar
  10. 10.
    C. Moreno-Hernández, D. Monzón-Hernández, I. Hernández-Romano, J. Villatoro, Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample. Opt. Express 23(17), 22141–22148 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    J.A. Kim, J.W. Kim, T.B. Eom, J. Jin, C.S. Kang, Vibration-insensitive measurement of thickness variation of glass panels using double-slit interferometry. Opt. Express 22(6), 6486–6494 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    J. Park, J. Bae, J. Jin, J.A. Kim, J.W. Kim, Vibration-insensitive measurements of the thickness profile of large glass panels. Opt. Express 23(26), 32941–32949 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    H. Fu, H. Li, M. Shao, N. Zhao, Y. Liu, Y. Li, X. Yan, Q. Liu, TCF-MMF-TCF fiber structure based interferometer for refractive index sensing. Opt. Lasers Eng. 69, 58–61 (2015)CrossRefGoogle Scholar
  14. 14.
    W.V. Sorin, D.F. Gray, Simultaneous thickness and group index measurement using optical low-coherence reflectometry. IEEE Photon. Technol. Lett. 4(1), 105–107 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    J. Na, H.Y. Choi, E.S. Choi, C. Lee, B.H. Lee, Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index. Appl. Opt. 48(13), 2461–2467 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S. Kim, J. Na, M.J. Kim, B.H. Lee, Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics. Opt. Express 16(8), 5516–5526 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    P. Balling, P. Mašika, P. Křen, M. Doležal, Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy. Meas. Sci. Technol. 23(9), 094001 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    S.C. Zilio, Simultaneous thickness and group index measurement with a single arm low-coherence interferometer. Opt. Express 22(22), 27392–27397 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    X. Ma, W. Xiao, F. Pan, Reconstruction method for samples with refractive index discontinuities in optical diffraction tomography. Opt. Lasers Eng. 94, 58–62 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Li, Q. Chen, J. Zhang, Z. Zhang, Y. Zhang, C. Zuo, Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array. Opt. Lasers Eng. 95, 26–34 (2017)CrossRefGoogle Scholar
  21. 21.
    H.C. Cheng, Y.C. Liu, Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography. Appl. Opt. 49(5), 790–797 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    H.C. Cheng, C.T. Huang, Measurement of thickness and refractive index of optical samples simultaneously using full-range one-shot frequency-domain optical coherence tomography. Fiber Integrated Opt 34(3), 145–156 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    J. Yao, J. Huang, P. Meemon, M. Ponting, J.P. Rolland, Simultaneous estimation of thickness and refractive index of layered gradient refractive index optics using a hybrid confocal-scan swept-source optical coherence tomography system. Opt. Express 23(23), 30149–30164 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    D. Pristinski, V. Kozlovskaya, S.A. Sukhishvili, Determination of film thickness and refractive index in one measurement of phase-modulated ellipsometry. J. Opt. Soc. Am. A 23(10), 2639–2644 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    M. Mutha, R.P. Schmid, K. Schnitzlein, Ellipsometric study of molecular orientations of thermomyces lanuginosus lipase at the air–water interface by simultaneous determination of refractive index and thickness. Colloid Surf. Biointerfaces 140, 60–66 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Räsänen, K.E. Peiponen, On-line measurement of the thickness and optical quality of float glass with a sensor based on a diffractive element. Appl. Opt. 40(28), 5034–5039 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    C.H. Liu, Z.H. Li, Application of the astigmatic method to the thickness measurement of glass substrates. Appl. Opt. 47(21), 3968–3972 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    C.H. Liu, S.C. Yeh, H.L. Huang, Thickness measurement system for transparent plates using dual digital versatile disc (DVD) pickups. Appl. Opt. 49(4), 637–643 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    C.H. Liu, C.C. Liu, W.C. Huang, Application of astigmatic method and Snell’s law on the thickness and refractive index measurement of a transparent plate. Microsyst. Technol. 19(11), 1761–1766 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Sun, J. Zhang, Z. Liu, G. Zhang, A vision measurement model of laser displacement sensor and its calibration method. Opt. Lasers Eng. 51, 1344–1352 (2013)CrossRefGoogle Scholar
  31. 31.
    C.S. Liu, S.H. Jiang, A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam. Meas. Sci. Technol. 24(1-), 105101 (2013) -105101–8ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
  33. 33.
    P.D. Lin, New Computation Methods for Geometrical Optics (Springer, 2013)Google Scholar
  34. 34.
    C.Y. Tsai, Free-form surface design method for a collimator TIR lens. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 33(4), 785–792 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Y.T. Chen, W.C. Lin, C.S. Liu, Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage. Opt. Lasers Eng. 92, 94–104 (2017)CrossRefGoogle Scholar
  36. 36.
    Y.T. Chen, Y.S. Huang, C.S. Liu, An optical sensor for measuring the position and slanting direction of flat surfaces, Sensors 16(7), 1061-1–1061-13 (2016)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Cheng Kung UniversityTainanTaiwan, Republic of China
  2. 2.Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-tech InnovationsNational Chung Cheng UniversityChiayi CountyTaiwan, Republic of China

Personalised recommendations