Advertisement

Applied Physics B

, 124:186 | Cite as

A frequency-modulated-continuous-wave laser detection system based on the four-quadrant photodetector

  • Bohu Liu
  • Chengtian Song
  • Yinlin Li
  • Yabo Duan
Article
  • 34 Downloads

Abstract

A frequency-modulated-continuous-wave (FMCW) laser detection system based on the four-quadrant photodetector was presented in this paper. The cross-power-spectral-density (CPSD) algorithm was introduced to remove the incoherent noise in the four-quadrant signal spectrums. Some traditional denoising methods, including the empirical mode decomposition direct wavelet thresholding method, EMD interval thresholding method, correlation-based EMD partial reconstruction, fast Fourier transform and wavelet transformation, were investigated to provide a comparison with the CPSD algorithm. Both the simulation and experiment results show a superior performance of the four-quadrant detection system using CPSD algorithm. A better signal-to-noise ratio of the target echo to smoke interference was obviously increased to 6.3 dB under the smoke interference conditions. The relative error of this detection system was reduced from 7.36 to 1.36\(\%\), and its absolute error was less than 0.15 m. Therefore, this study was helpful in improving anti-interference ability of FMCW laser detection system.

Notes

Acknowledgements

This work is supported by the General Amrmament Department Key Program of China (Grant No. 5130502103). We are grateful for the experimental conditions and essay polishing help from Professor Li and Dr. Duan.

References

  1. 1.
    B.L. Stann, W.C. Ruff et al., Optical Eng. 35, 11 (1996)CrossRefGoogle Scholar
  2. 2.
    B. Journet, G. Bazin, IEEE Trans. Instrum. Meas. 49, 840–843 (2000)CrossRefGoogle Scholar
  3. 3.
    A.G. Stove, IEE Proc.-F Radar Signal Process. 139, 343–350 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    A. Meta, P. Hoogeboom et al., IEEE Trans. Geosci. Remote Sensing 45, 3519–3532 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    F. Millioz, M. Davies, IEEE Trans. Signal Process. 60, 2800–2813 (2012)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    P.R. White, IET Signal Process. 6, 478–483 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    L.M. Manojlovic, Z.P. Barbaric, IEEE Trans. Instrum. Meas. 58, 681–690 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Toyoda, K. Araki et al., Optical Eng. 41, 145–149 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    N. Sampietro, G. Accomando et al., IEEE Trans. Instrum. Meas. 49, 820–822 (2000)CrossRefGoogle Scholar
  10. 10.
    W.G. Ho, R. Gharpurey, IEEE Int. Symp. Circuits Syst. IEEE 19, 2197–2200 (2011)Google Scholar
  11. 11.
    Z.P. Feng, M. Liang et al., Mech. Syst. Signal Process. 38, 165–205 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    D.L. Donoho, I.M. Johnstone, Biometrika 81, 425–455 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D.L. Donoho, IEEE Trans. Inf. Theory 41, 613–627 (2002)CrossRefGoogle Scholar
  14. 14.
    R. Yan, R.X. Gao et al., Signal Process. 96, 1–15 (2014)CrossRefGoogle Scholar
  15. 15.
    N.E. Huang, S. Zheng et al., R. Soc. 454, 903–995 (1998)CrossRefGoogle Scholar
  16. 16.
    N.E. Huang, S.R. Long et al., Adv. Appl. Mech. 32, 59–117 (1996)CrossRefGoogle Scholar
  17. 17.
    N.E. Huang, H.H. Shih, J. Phys. Oceanogr. 30, 2001–2012 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Y.G. Lei, J. Lin et al., Mech. Syst. Signal Process. 35, 108–126 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Kopsinis, S. Mclaughlin, in 1st IAPR International Workshop on Cognitive Information Processing, CIP, 2008Google Scholar
  20. 20.
    Y. Kopsinis, S. Mclaughlin, in Proceedings of the 16th European Signal Processing Conference, EUSIPCO, 2008Google Scholar
  21. 21.
    Y. Kopsinis, S. Mclaughlin, IEEE Trans. Signal Process. 57, 1351–1362 (2009)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    E. Wolf, J. Optical Soc. Am. 72, 343–351 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    D.W. Illig, A. Laux, R.W. Lee, W.D. Jemison, L.J. Mullen, in SPIE Proceedings of Ocean Sensing and Monitoring VII, 94590B, ed. by W.W. Hou, R.A. Arnone. FMCW optical ranging technique in turbid waters, vol 9459 (2015)Google Scholar
  24. 24.
    B.H. Liu, C.T. Song et al., Optical Rev. (2018)  https://doi.org/10.1007/s10043-018-0406-7 CrossRefGoogle Scholar
  25. 25.
    M. Grabner, V. Kvicera, Optics Exp. 19, 3379–3386 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    A.E.S. Green, R.P. Singhal, J. Air Pollut. Control Assoc. 30, 773–776 (1980)CrossRefGoogle Scholar
  27. 27.
    J.E. Sinko, B.I. Oh, AIP Conf. Proc. 1402, 245–257 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    H.C. Van de Hulst, V. Twersky, Light Scattering by Small Particles (Wiley Press, New York, 1957)Google Scholar
  29. 29.
    L. Heming, W. Qianqian et al., Semiconductor Lasers Appl. VII (2016)  https://doi.org/10.1117/12.2246369 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bohu Liu
    • 1
  • Chengtian Song
    • 1
  • Yinlin Li
    • 1
  • Yabo Duan
    • 2
  1. 1.School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.Beijing Electro Mechanical Engineering InstituteBeijingPeople’s Republic of China

Personalised recommendations