Advertisement

Applied Physics B

, 124:182 | Cite as

Expanding up to far-infrared filamentation-induced supercontinuum spanning in chalcogenide glasses

  • O. Mouawad
  • P. Béjot
  • P. Mathey
  • P. Froidevaux
  • A. Lemière
  • F. Billard
  • B. Kibler
  • F. Désévédavy
  • G. Gadret
  • J.-C. Jules
  • O. Faucher
  • F. Smektala
Article
  • 72 Downloads

Abstract

We report on far-infrared filament-induced supercontinuum obtained with three chalcogenide glasses. The introduction of more polarizable elements (Se instead of S and Te instead of S and Se) into the glasses increases their non-linearity and transmission window and also shifts gradually corresponding zero-dispersion wavelength in the infrared region. Overall chalcogenide glasses were pumped with 65-fs pulses at the optimal wavelength with respect to supercontinuum extension. An infrared spanning reaching the 16-µm threshold is obtained.

Notes

Acknowledgements

We acknowledge the financial support from the Conseil Régional de Bourgogne and the FEDER (Fonds Européen de Développement Régional) through the Photcom PARI program. This project has been performed in cooperation with the Labex ACTION program (contract ANR-11-LABX-0001-01).

References

  1. 1.
    R.R. Alfano, S.L. Shapiro, Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer Science & Business Media, Berlin, 2012)CrossRefGoogle Scholar
  3. 3.
    M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, D. Fleury, B. Moreau, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J. Dubois, Kilometer range filamentation: effects of filaments on transparent and non-transparent materials at long distances, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThFF3Google Scholar
  4. 4.
    S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, L. Bergé, Self-guided propagation of ultrashort IR laser pulses in fused silica. Phys. Rev. Lett. 87, 213902 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Y.E. Geints, A.A. Zemlyanov, Numerical simulations of ultrashort laser pulse multifilamentation in fused silica: plasma channels statistics. J. Opt. 18, 015501 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    V.Q. Nguyen, J.S. Sanghera, I.D. Aggarwal, I.K. Lloyd, Physical properties of chalcogenide and chalcohalide glasses. J. Am. Ceram. Soc. 83, 55–859 (2000)Google Scholar
  8. 8.
    S. Danto, P. Houizot, C. Boussard-Pledel, X.H. Zhang, F. Smektala, J. Lucas, A family of far-infrared-transmitting glasses in the Ga–Ge–Te system for space applications. Adv. Funct. Mater. 16, 1847–1852 (2006)CrossRefGoogle Scholar
  9. 9.
    E. Zhu, B. Wu, X. Zhao, J. Wang, C. Lin, X. Wang, X. Li, P. Tian, Surface crystallization behavior and physical properties of (GeTe4)85(AgI)15 chalcogenide glass. Infrared Phys. Technol. 86, 135–138 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A. Zakery, S.R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, Berlin, 2007)Google Scholar
  11. 11.
    B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    J. Hu, J. Meyer, K. Richardson, L. Shah, Feature issue introduction: mid-IR photonic materials. Opt. Mater. Express 3, 1571–1575 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu, Integrated flexible chalcogenide glass photonic devices. Nat. Photonics 8, 643–649 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, R.C. Wang, Mid-infrared supercontinuum covering 2.0–16 µm in a low-loss telluride single-mode fiber. Laser Photonics Rev. 11, 1770023 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    V.S. Shiryaev, M.F. Churbanov, Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics. J. NonCryst. Solids 475, 1–9 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    V.S. Shiryaev, M.F. Churbanov, Preparation of high-purity chalcogenide glasses, in Chalcogenide Glasses (Elsevier, 2014)Google Scholar
  17. 17.
    O. Mouawad, Infrared Supercontinuum Generation and Aging Challenges in Sulfur-Based Chalcogenide Glasses Suspended Core Highly Non Linear Optical Fibers (Université de Bourgogne, Dijon, 2014)Google Scholar
  18. 18.
    M. Rozé, L. Calvez, J. Rollin, P. Gallais, J. Lonnoy, S. Ollivier, M. Guilloux-Viry, X.-H. Zhang, Optical properties of free arsenic and broadband infrared chalcogenide glass. Appl. Phys. A 98, 97 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, J.L. Adam, GeSe4 glass fibres with low optical losses in the mid-IR. Opt. Mater. 32, 212–215 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Y.D. West, T. Schweizer, D.J. Brady, D.W. Hewak, Gallium lanthanum sulphide fibers for infrared transmission. Fiber Integr. Opt. 19, 229–250 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Kawamoto, S. Tsuchihashi, Glass-forming regions and structure of glasses in the system Ge–S. J. Am. Ceram. Soc. 52, 626–627 (1969)CrossRefGoogle Scholar
  22. 22.
    O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.C. Jules, H. Giessen, F. Smektala, Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers. Appl. Phys. B 122, 177 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    I. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.C. Jules, P.Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, F. Smektala, Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers. Opt. Express 20, 27083–27093 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    S. Than Singh, T. Umesh Kumar, S. Ravindra Kumar, Rib waveguide in Ga–Sb–S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis. J. Appl. Phys. 122, 053104 (2017)CrossRefGoogle Scholar
  25. 25.
    M.R. Karim, B.M.A. Rahman, Numerical investigation of mid-infrared supercontinuum generation in GeAsSe based chalcogenide photonic crystal fiber using low peak power. Appl. Phys. Res. 8, 29–37 (2016)CrossRefGoogle Scholar
  26. 26.
    O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J.C. Jules, O. Heintz, E. Lesniewska, F. Smektala, Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation. Opt. Express 22, 23912–23919 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S.J. Madden, B. Luther-Davies, A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photonics Rev. 8, 792–798 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, Y. Ohishi, Ultrabroad supercontinuum generation through filamentation in tellurite glass. Laser Phys. Lett. 10, 036002 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    A.A. Wilhelm, C. Boussard-Pledel, J.Q. Coulombier, B. Lucas, Bureau, P. Lucas, Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Adv. Mater. 19, 3796–3800 (2007)CrossRefGoogle Scholar
  30. 30.
    M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, O. Yasutake, Five-octave-spanning supercontinuum generation in fluoride glass. Appl. Phys. Express 6, 032503 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    V. Kokorina, Glasses for Infrared Optics (CRC Press, Boca Raton, 1996)Google Scholar
  32. 32.
    R. Lin, F. Chen, X. Zhang, Y. Huang, B. Song, S. Dai, X. Zhang, W. Ji, Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system. Opt. Express 25, 25674–25688 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    S. Cui, C. Boussard-Plédel, J. Lucas, B. Bureau, Te-based glass fiber for far-infrared biochemical sensing up to 16 µm. Opt. Express 22, 21253–21262 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    P. Lucas, B. Bureau, Selenide glass fibers for biochemical infrared sensing, in Applications of Chalcogenides: S, Se, and Te, ed. by G.K. Ahluwalia (Springer International Publishing, Cham, 2016), pp. 285–319Google Scholar
  35. 35.
    L.G. Aio, A.M. Efimov, V.F. Kokorina, Refractive index of chalcogenide glasses over a wide range of compositions. J. NonCryst. Solids 27, 299–307 (1978)ADSCrossRefGoogle Scholar
  36. 36.
    S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, G. Parent, Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application. Opt. Mater. 32, 1055–1059 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Q. Guanshi, Y. Xin, K. Chihiro, L. Meisong, C. Chitrarekha, S. Takenobu, O. Yasutake, Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber. Appl. Phys. Lett. 95, 161103 (2009)CrossRefGoogle Scholar
  38. 38.
    J.H. Marburger, Self-focusing: theory. Prog. Quantum Electron. 4, 35–110 (1975)ADSCrossRefGoogle Scholar
  39. 39.
    O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.C. Jules, O. Faucher, F. Smektala, Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses. Appl. Phys. B 121, 433–438 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • O. Mouawad
    • 1
    • 2
  • P. Béjot
    • 1
  • P. Mathey
    • 1
  • P. Froidevaux
    • 1
  • A. Lemière
    • 1
  • F. Billard
    • 1
  • B. Kibler
    • 1
  • F. Désévédavy
    • 1
  • G. Gadret
    • 1
  • J.-C. Jules
    • 1
  • O. Faucher
    • 1
  • F. Smektala
    • 1
  1. 1.ICB, Laboratoire Interdisciplinaire Carnot de BourgogneUMR 6303 CNRS-Université de Bourgogne Franche-ComtéDijonFrance
  2. 2.Laboratoire Énergétique et Réactivité à l’Echelle Nanométrique (EREN)Université Libanaise FSIVZahlehLebanon

Personalised recommendations