Applied Physics B

, 124:172 | Cite as

High conversion efficiency and small spot size of Kα X-ray generated from nano-foam Cu targets irradiated by femtosecond laser pulses

  • Hongjian WangEmail author
  • Zeren Li
  • Zhanbin Chen


Developing high-quality X-ray source to diagnose shock wave and changing the material and structure features of the target were presented to enhance its absorbability to ultra-intense laser energy. Experiments were carried out on the XingGuang-III Ti: sapphire laser facility (2.1– 6 J, 30 fs) at Laser Fusion Research Center, China Academy of Engineering Physics. The minimum intensity was 1.6 × 1018 W/cm2 on a nano-foam Cu target with the thickness of 100 µm, the porosity of 70% and the density ratio of 30% solids of Cu. The emission of Kα X-rays from the target was measured using a single-photon counting CCD device. This nano-foam target had generated a Kα peak photon rate of 2.9 × 108 photons sr−1 s−1 and the maximum conversion efficiency (CE) value was 0.0084%. The average CE of the nano-foam Cu was 1.8 times greater than that of foil Cu target. The minimum spot size of the X-ray source was measured to be about 40 µm at full width at half maximum, smaller than 47–86 µm of the foil Cu target using 0.1-mm thick knife-edge method. The nano-foam structure showed the potential of enhancing the CE of the femtosecond laser for X-ray conversion.



We wish to thank all crew of the laser operation and the experiment groups on XG-III at CAEP. This work was supported by the National High Technology Research and Development Program of China, State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics, CAS), Scientific & Technological Research Program of Chongqing Municipal Education Commission (KJ1600633), the National Natural Science Foundation of China (Grant No. 11504421) and Chongqing Key Laboratory of Manufacturing Equipment Mechanism Design and Control (KFJJ2016031, KFJJ2017052 and KFJJ2017053).


  1. 1.
    D.C. Eder, G. Pretzler, E. Fill, K. Eidmann, A. Saemann, Spatial characteristics of Kα radiation from weakly relativistic laser plasmas. Appl. Phys. B 70(2), 211–217 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    A. Elci, M.O. Scully, A.L. Smirl, J.C. Matter, Ultrafast transient response of solid-state plasmas. I. Germanium, theory, and experiment. Phys. Rev. B 16, 191 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    C.G. Serbanescu, J.A. Chakera, R. Fedosejevs, Efficient kalpha X-ray source from submillijoule femtosecond laser pulses operated at kilohertz repetition rate. Rev. Sci. Instrum. 78, 103502 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A. Rousse, C. Rischel, J.C. Gauthier, Colloquium: femtosecond X-ray crystallography. Rev. Mod. Phys. 73, 17–31 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    F. Ewald, H. Schwoerer, R. Sauerbrey, Fission of actinides using a tabletop laser. Europhys. Lett. 60, 710 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    J. Kuba, A. Wootton, R.M. Bionta, R. Shepherd, E.E. Fill, T. Ditmire, G. Dyer, R.A. London, V.N. Shlyaptsev, J. Dunn, R. Booth, S.S. Bajt, R.F. Smith, M.D. Feit, R. Levesque, M. McKernan, X-ray optics research for linac Coherent light source: interaction of ultra-short X-ray pulses with matter. Nucl. Instrum. Methods Phys. Res. A 507, 475 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    D. Shiffler, S. Heidger, K. Cartwright, Materials characteristics and surface morphology of a cesium iodide coated carbon velvet cathode. J. Appl. Phys. 103, 013302 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    L.M. Chen, M. Kando, M.H. Xu, Y.T. Li, J. Koga, M. Chen, H. Xu, X.H. Yuan, Q.L. Dong, Z.M. Sheng, S.V. Bulanov, Y. Kato, J. Zhang, T. Tajima, Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil. Phys. Rev. Lett. 100, 045004 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    L.M. Chen, F. Liu, Intense high-contrast femtosecond k-shell X-ray source from laser-driven ar clusters. Phys. Rev. Lett. 104, 215004 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D.H. Kalatar, J.F. Belak, G.W. Collins, J.D. Colvin, H.M. Davies, J.H. Eggert, T.C. Germann, J. Hawreliak, B.L. Holian, K. Kadau, P.S. Lomdahl, H.E. Lorenzana, M.A. Meyers, K. Rosolankova, M.S. Schneider, J. Sheppard, J.S. Stölken, J.S. Wark, Direct observation of the α – ε transition in shock-compressed iron via nanosecond X-ray diffraction. Phys. Rev. Lett. 95, 075502 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    X.Y. Li, J.X. Wang, W.J. Zhu, Y. Ye, J. Li, Y. Yu, Enhanced inner-shell X-ray emission by femtosecond-laser irradiation of solid cone targets. Phys. Rev. E 83, 046404 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    H.S. Park, B.R. Maddox, E. Giraldez, S.P. Hatchett, L. Hudson, N. Izumi, M.H. Key, S. Le Pape, A.J. MacKinnon, A.G. MacPhee, P.K. Patel, T.W. Phillips, B.A. Remington, J.F. Seely, R. Tommasini, R. Town, J. Workman. High-resolution 17–75 keV backlighters for high energy density experiments. Phys. Plasmas 15, 072705 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    J.Y. Mao, L.M. Chen, X.L. Ge, L. Zhang, W.C. Yan, D.Z. Li, G.Q. Liao, J.L. Ma, K. Huang, Y.T. Li, X. Lu, Q.L. Dong, Z.Y. Wei, Z.M. Sheng, J. Zhang, Spectrally peaked electron beams produced via surface guiding and acceleration in femtosecond laser-solid interactions. Phys. Rev. E 85, 025401 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Tian, W.T. Wang, C. Wang, X.M. Lu, C. Wang, Y.X. Leng, X.Y. Liang, J.S. Liu, R.X. Li, Z.Z. Xu, Experimental study of K-shell X-ray emission generated from nanowire target irradiated by relativistic laser pulses. Chin. Opt. Lett. 11, 033501 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    P.P. Rajeev, P. Taneja, P. Ayyub, A.S. Sandhu, G.R. Kumar, Metal nanoplasmas as bright sources of hard X-Ray pulses. Phys. Rev. Lett. 90, 115002 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S. Mondal, I. Chakraborty, S. Ahmad, D. Carvalho, P. Singh, A.D. Lad, V. Narayanan, P. Ayyub, G. Ravindra Kumar, J. Zheng, Z.M. Sheng, Highly enhanced hard X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses. Phys. Rev. B 83, 035408 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    N.G. Borisenko, A.E. Bugrov, I.N. Burdonskiy et al., Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26(4), 537–543 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    W. Shang, J. Yang, W. Zhang et al., Experimental demonstration of laser to X-ray conversion enhancements with low density gold targets. Appl. Phys. Lett. 108, 064102 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    A.E. Bugrov, I.N. Burdonskiy, O.L. Dedova et al., Experimental study of laser interaction with fibrous and foam like materials. Contrib. Plasma Phys. 45(3–4), 185–191 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    R. Fazeli, Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets. Phys. Lett. A 381, 467–471 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    R. Fazeli, Tuning laser plasma X-ray source for single shot microscopy using nano-porous targets. Opt. Lett. 41, 22:5250 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    S.L. Xiao, H.J. Wang, J. Shi, C.H. Tang, S.Y. Liu, High resolution X-ray spherically bent crystal spectrometer for laser-produced plasma diagnostics. Chin. Opt. Lett. 7, 92 (2009)CrossRefGoogle Scholar
  23. 23.
    D. Kulcsár, F.W. AlMawlawi, P.R. Budnik, M. Herman, L. Moskovits, R.S. Zhao, Marjoribanks, Intense picosecond X-Ray pulses from laser plasmas by use of nanostructured “Velvet” targets. Phys. Rev. Lett. 84, 5149 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    J. Su, Q. Zhu, N. Xie, K.N. Zhou, Z.J. Huang, X.M. Zeng, X. Wang, X.D. Wang, X.D. Xie, L. Zhao, Y.L. Zuo, D.B. Jiang, L. Sun, Y. Guo, S. Zhou, J. Wen, Q. Li, Z. Huang, X.J. Jiang, F. Jing, Progress on the XG-III high-intensity laser facility with three synchronized beams. Proc. of SPIE 9255, 925511 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Y.H. Yan, L. Wei, X.L. Wen, Y.C. Wu, Z.Q. Zhao, B. Zhang, B. Zhu, W. Hong, L.F. Cao, Z.E. Yao, Y.Q. Gu, Calibration and Monte Carlo simulation of a single-photon counting charge-coupled device for single-shot X-ray spectrum measurements. Chin. Opt. Lett. 11, 110401 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Z.L. Li, R.K. Hite, Y.F. Cheng, T. Walz, Evaluation of imaging plates as recording medium for images of negatively stained single particles and electron diffraction patterns of two-dimensional crystals. J. Electron Microsc. 59, 53 (2010)CrossRefGoogle Scholar
  27. 27.
    X.L. Tan, K. Li, G. Niu, Z. Yi, J.S. Luo, Y. Liu, S.J. Han, W.D. Wu, Y.J. Tang, Effect of heat treatment of Mn-Cu precursors on morphology of dealloyed nanoporous copper. J. Cent. South Univ. 19, 17 (2012)CrossRefGoogle Scholar
  28. 28.
    J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Evolution of nanoporosity in dealloying. Nature 410, 450 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    S. Dobosz, M. Lezius, M. Schmidt, P. Meynadier, M. Perdrix, D. Normand, Absolute keV photon yields from ultrashort laser-field-induced hot nanoplasmas. Phys. Rev. A 56, 2526 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Xiong. Conversion efficiencies of ultra-short ultra-intensity laser to ultra hot based on Ka X-ray electron (Ph.D.thesis) (Mianyang: Chinese Academy of Engineering Physics) (in Chinese) (2008)Google Scholar
  31. 31.
    M. Hagedorn, J. Kutzne, G. Tsilimis, H. Zacharias, High-repetition-rate hard X-ray generation with sub-millijoule femtosecond laser pulses. Appl Phys B 77, 49–57 (2003)CrossRefGoogle Scholar
  32. 32.
    S. Bagchi, P.P. Kiran, K. Yang, A.M. Rao, M.K. Bhuyan, M. Krishnamurthy, G. Ravindra Kumar, Phys. Plasmas 18, 014502 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    H.J. Wang, Q.G. Yang, Y.E.Y. Li, J. Meng, L.M. Yu, Y. Wang, H.R. Mu, J. Peng, Q.X. Li, Measurement of femtosecond laser-driven X-ray focal spot with repetition frequency. High Power Laser Part. Beams 27, 032039 (2015)CrossRefGoogle Scholar
  34. 34.
    J.R. Norby, L.D. Van Woerkom, Soft-X-ray imaging from an ultrashort-pulse laser-produced plasma using a multilayer coated optic. J. Opt. Soc. Am. B 13, 454 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    S. Fourmaux, C. Serbanescu, R.E. Kincaid Jr., A. Krol, J.C. Kieffer, K(alpha) X-ray emission characterization of 100 Hz, 15 mJ femtosecond laser system with high contrast ratio. Appl. Phys. B 94, 569 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    K.A. Tanaka, T. Yabuuchi, T. Sato, R. Kodama, Y. Kitagawa, T. Takahashi, T. Ikeda, Y. Honda, S. Okuda. Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76, 013507 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    F.N. Beg, A.R. Bell, A.E. Dangor, C.N. Danson, A.P. Fews, M.E. Glinsky. A study of picosecond laser–solid interactions up to $10^{19}$ W/$cm^{– 2}$. Phys. Plasmas 4, 447 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    G. Malka, J.L. Miquel, Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett. 77, 75 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    J. Denavit, Absorption of high-intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 3052 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    R. Stoian, D. Ashkenasi, et. al. Coulomb explosion in ultrashort pulsed laser ablation of al2o3. Phys. Rev. B 62, 13167 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    L. Zhang, L.M. Chen et al., Enhanced kα output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses. Opt. Express 19, 25812–25822 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Manufacturing Equipment Mechanism Design and ControlChongqing Technology and Business UniversityChongqingChina
  2. 2.Institute of Fluid PhysicsChina Academy of Engineering PhysicsMianyangChina
  3. 3.School of ScienceHunan University of TechnologyZhuzhouChina
  4. 4.College of ScienceNational University of Defense TechnologyChangshaChina

Personalised recommendations