# Particle swarm optimization to focus coherent light through disordered media

- 168 Downloads

## Abstract

We introduce particle swarm optimization for phase modulation to focus light through disordered media. Using 4096 independently controlled segments of incident wavefront, the intensity at the target is 123 times enhanced over the original intensity of the same output channel. The particle swarm optimization and existing phase control algorithms of focusing through scattering media are compared by the experiment. It is found that particle swarm optimization achieves the highest enhancement with less time compared to genetic algorithm.

## Notes

### Acknowledgements

The authors thank Fuhua Gao and Jinglei Du for fruitful discussions.

### Funding

National Natural Science Foundation of China (NSFC) (61377054, 61675140). Graduate Student’s Research and Innovation Fund of Sichuan University (2018YJSY005).

## References

- 1.M.J. Booth, M.A.A. Neil, R. Juškaitis, T. Wilson, Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. USA 99, 5788–5792 (2002)ADSCrossRefGoogle Scholar
- 2.I.M. Vellekoop, A.P. Mosk, Focusing coherent light through opaque strongly scattering media. Opt. Lett.
**32**, 2309–2311 (2007)ADSCrossRefGoogle Scholar - 3.M. Cui, E.J. Mcdowell, C. Yang, An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear. Opt. Express
**18**, 25–30 (2010)ADSCrossRefGoogle Scholar - 4.M. Cui, C. Yang, Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express
**18**, 3444–3455 (2010)ADSCrossRefGoogle Scholar - 5.T.R. Hillman, T. Yamauchi, W. Choi, R.R. Dasari, M.S. Feld, Y. Park, Z. Yaqoob, Digital optical phase conjugation for delivering two-dimensional images through turbid media. Sci. Rep.
**3**, 1909–1909 (2013)ADSCrossRefGoogle Scholar - 6.C.L. Hsieh, Y. Pu, R. Grange, D. Psaltis, Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express
**18**, 12283–12290 (2010)ADSCrossRefGoogle Scholar - 7.Z. Yaqoob, D. Psaltis, M.S. Feld, C. Yang, Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics
**2**, 110–115 (2008)ADSCrossRefGoogle Scholar - 8.I.M. Vellekoop, A.P. Mosk, Phase control algorithms for focusing light through turbid media. Opt. Commun.
**281**, 3071–3080 (2007)ADSCrossRefGoogle Scholar - 9.D.B. Conkey, A.N. Brown, A.M. Caravacaaguirre, R. Piestun, Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express
**20**, 4840–4849 (2012)ADSCrossRefGoogle Scholar - 10.L. Fang, X. Zhang, H. Zuo, L. Pang, Focusing light through random scattering media by four-element division algorithm. Opt. Commun.
**407**, 301–310 (2018)ADSCrossRefGoogle Scholar - 11.L. Fang, C. Zhang, H. Zuo, J. Zhu, L. Pang, Four-element division algorithm to focus coherent light through a turbid medium. Chin. Opt. Lett.,
**15**, 102901 (2017)ADSCrossRefGoogle Scholar - 12.S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A.C. Boccara, S. Gigan, Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett.
**104**, 100601–100601 (2010)ADSCrossRefGoogle Scholar - 13.S.M. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Controlling light through optical disordered media: transmission matrix approach. New J. Phys.
**13**, 1–9 (2011)CrossRefGoogle Scholar - 14.T. Chaigne, O. Katz, A.C. Boccara, M. Fink, E. Bossy, S. Gigan, Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix. Nat. Photonics
**8**, 58–64 (2013)ADSCrossRefGoogle Scholar - 15.F. Dai, Scattering and transmission matrix representations of multiguide junctions. IEEE Trans. Microw. Theory Tech.
**40**, 1538–1544 (1992)ADSCrossRefGoogle Scholar - 16.H.B. De Aguiar, S. Gigan, S. Brasselet, Enhanced nonlinear imaging through scattering media using transmission matrix based wavefront shaping. Phys. Rev. A
**94**(4), 043830 (2016)ADSCrossRefGoogle Scholar - 17.G.F. Gao, J.Z. Zhao, Z.X. Fu, Research on conical hole ladder horn based on transmission matrix method in ultrasonic milling. Adv. Mater. Res.
**1027**, 262–265 (2014)CrossRefGoogle Scholar - 18.G. Guillaume, N. Fortin, Optimized transmission line matrix model implementation for graphics processing units computing in built-up environment. J Build Perform Simul
**7**, 445–456 (2013)CrossRefGoogle Scholar - 19.G. Han, T. Wang, MIMO system based on UWB transmitter channel transmission matrix optimization. Springer International Publishing, Berlin (2014)CrossRefGoogle Scholar
- 20.J.C. Holzhaider, M.D. Sibley, A.H. Taylor, P.J. Singh, R.D. Gray, G.R. Hunt, The social structure of New Caledonian crows. Anim. Behav.
**81**, 83–92 (2011)CrossRefGoogle Scholar - 21.M. Kim, W. Choi, Y. Choi, C. Yoon, W. Choi, Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express
**23**, 12648–12668 (2015)ADSCrossRefGoogle Scholar - 22.M.B. Patil, Y. Okuyama, Y. Ohkura, T. Toyabe, S. Ihara, Transmission matrix approach for electron transport in inversion layers. Solid-State Electron.
**37**, 1359–1365 (1994)ADSCrossRefGoogle Scholar - 23.S. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Image transmission through an opaque material. Nat. Commun.
**1**, 81 (2010)ADSCrossRefGoogle Scholar - 24.S. Tripathi, R. Paxman, T. Bifano, T.K. Jr, Vector transmission matrix for the polarization behavior of light propagation in highly scattering media. Opt. Express
**20**, 16067–16076 (2012)ADSCrossRefGoogle Scholar - 25.M. Shokooh-Saremi, R. Magnusson, Particle swarm optimization and its application to the design of diffraction grating filters. Opt. Lett.
**32**, 894–896 (2007)ADSCrossRefGoogle Scholar