Applied Physics B

, 124:148 | Cite as

Multiwavelength differential absorption lidar to improve measurement accuracy: test with ammonia over a traffic area

  • Riccardo RossiEmail author
  • Jean-François Ciparisse
  • Andrea Malizia
  • Michela Gelfusa
  • Pasquale Gaudio


The development and improvement of techniques to monitor off-normal concentrations of chemicals in the atmosphere are crucial to guarantee human and environmental health, safety, and security. An interesting technique for use in research activities is the differential absorption lidar (DIAL); an improvement of the lidar technique able to provide information about the concentration of chemicals in the atmosphere. This work is focused on the use of DIAL, using a multiwavelength approach to increase the accuracy of gas concentration measurements in the atmosphere. The authors perform the uncertainty propagation analysis of this method, and highlight the advantages and the limits of this technique. Then, they applied this multiwavelength technique to preliminary DIAL measurements of ammonia in the atmosphere using three couples of laser wavelengths. The measurements are performed over a traffic area and are compared with water vapour measurements. A strong correlation between ammonia and water has been found a symptom that both chemicals belong to the exhaust gases of vehicles.


  1. 1.
    J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics—From Air Pollution to Climate Change (Wiley, New York, 2016)Google Scholar
  2. 2.
    C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, Climate Change 2014—Impacts, Adaptation, and Vulnerability (IPCC-Intergovernmental Panel on Climate Change, Geneva, 2014)CrossRefGoogle Scholar
  3. 3.
    K.R. Smith, Biofuels, Air Pollution, and Health: A Global Review (Springer Science & Business Media, Berlin, 2013)Google Scholar
  4. 4.
    K. Zhang, S. Batterman, Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 450451, 307–316 (2013)CrossRefGoogle Scholar
  5. 5.
    L.B. Lave, E.P. Seskin, Air Pollution and Human Health (Earthscan, New York, 2011)Google Scholar
  6. 6.
    Environmental Pollution Centers, Air Pollution Diseases (2017) (online).
  7. 7.
    X.Q. Jiang, X.D. Mei, D. Feng, Air pollution and chronic airway diseases: what should people know and do?. J. Thorac. Dis. 8(1), E31–E40 (2016)Google Scholar
  8. 8.
    T. Bourdrel, M.A. Bind, Y. Béjot, O. Morel, J.F. Argacha, Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110(11), 634–642 (2017)CrossRefGoogle Scholar
  9. 9.
    R.P. Pohanish, Toxic and Hazardous Chemicals and Carcinogens (Elsevier, Chennai, 2017)Google Scholar
  10. 10.
    J.C. Rippey, M.I. Stallwood, Nine cases of accidental exposure to dimethyl sulphate—a potential chemical weapon. Emerg. Med. J. 22, 878–879 (2004)CrossRefGoogle Scholar
  11. 11.
    A.J. Tomassoni, R.N. French, F.G. Walter, Toxic industrial chemicals and chemical weapons—exposure, identification and management by syndrome. Emerg. Med. Clin. N. Am. 33, 13–36 (2015)CrossRefGoogle Scholar
  12. 12.
    World Health Organization, Deliberate chemical release. (2017). Accessed 18 Apr 2018 (online)
  13. 13.
    C. Ortolani, M. Vitale, The importance of local scale for assessing, monitoring and predicting of air quality in urban areas. Sustain. Cities Soc. 26, 150–160 (2016)CrossRefGoogle Scholar
  14. 14.
    G. Ottinger, E. Sarantschin, Exposing infrastructure: how activists and experts connect ambient air monitoring and environmental health. Environ. Sociol. 3(2), 155–165 (2016)CrossRefGoogle Scholar
  15. 15.
    T. Shah, J. Jawas, H. Mohd, K.A. Al Farisi, J.C. Banluta, Personal exposure monitoring of hazardous chemicals, in Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi (2016)Google Scholar
  16. 16.
    V.A. Kovalev, W.E. Eichinger, Elastic Lidar—Theory, Practice and Analysis Methods (Wiley, Hoboken, 2004)CrossRefGoogle Scholar
  17. 17.
    D.K. Killinger, A. Mooradian, Optical and Laser Remote Sensing (Springer, Berlin, 1983)CrossRefGoogle Scholar
  18. 18.
    J.U. Eitel, B. Höfle, L.A. Vierling, A. Abellán, G.P. Asner, J.S. Deems, C.L. Glennie, P.C. Joerg, A.L. LeWinter, T.S. Magney, G. Mandlburger, D.C. Morton, J. Müller, K.T. Vierling, Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sens. Environ. 186, 372–392 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    K. Koenig, B. Höfle, M. Hämmerle, T. Jarmer, B. Siegmann, H. Lilienthal, Comparative classification analysis of post-harvest growth detection from terrestrial LiDAR point clouds in precision agriculture. ISPRS J. Photogramm. Remote Sens. 104, 112–125 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    F. Duschek, L. Fellner, F. Gebert, K. Grünewald, A. Köhntopp, M. Kraus, P. Mahnke, C. Pargmann, H. Tomaso, A. Walter, Standoff detection and classification of bacteria by multispectral laser-induced fluorescence. Adv. Opt. Technol. 6(2), 75–83 2017ADSGoogle Scholar
  21. 21.
    P. Gaudio, M. Gelfusa, A. Murari, R. Pizzoferrato, M. Carestia, O. Cenciarelli, S. Parracino, G. Ludovici, J. Gabriele, V. Gabbarini, D. Di Giovanni, R. Rossi, J.-F. Ciparisse, C. Bellecci, A. Malizia, Application of optical techniques to detect chemical and biological agents. Defence S Tech. Bull. 10(1), 1–13 (2017)Google Scholar
  22. 22.
    P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, T. Caltabiano, Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC). Appl. Phys. B 67(4), 419–426 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    N. Cao, S. Li, T. Fukuchi, T. Fujii, R.L. Collins, Z. Wang, Z. Chen, Measurement of tropospheric O3, SO2 and aerosol from a volcanic emission event using new multi-wavelength differential-absorption lidar techniques. Appl. Phys. B 85(1), 163–167 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    C. Bellecci, M. Francucci, P. Gaudio, M. Gelfusa, S. Martellucci, M. Richetta, T. Lo Feudo, Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm. Appl. Phys. B Lasers Opt. 87(2), 373–378 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    P. Gaudio, C. Bellecci, I. De Leo, M. Gelfusa, T. Lo Feudo, S. Martellucci, M. Richetta, Reduction of false alarms in forest fire surveillance using water vapour concentration measurements. Opt. Lasers Technol. 41, 374–379 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    C. Weitkamp, Lidar—Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, Geesthacht, 2005)Google Scholar
  27. 27.
    R. Sa, L. Bu, Q. Wang, J. Zhou, Spectral characteristics of polluted gases and their detection by mid-infrared differential absorption lidar. Optik Int. J. Light Electron. Opt. 149, 113–124 (2017)CrossRefGoogle Scholar
  28. 28.
    S.M. Spuler, T. Weckwerth, K. Repasky, M. Hayman, A. Nehrir, Testing and validation of a micro-pulse, differential absorption lidar (DIAL) for measuring the spatial and temporal distribution of water vapor in the lower atmosphere, in Light, Energy and the Environment, OSA Technnical Digest (2016)Google Scholar
  29. 29.
    T.M. Weckwerth, K.J. Weber, Validation of a water vapor micropulse differential absorption lidar (DIAL). J. Atmos. Ocean. Technol. 33, 2353–2372 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    H. Kildal, R.L. Byer, Comparison of laser methods for the remote detection of atmospheric pollutants. Proc. IEEE 59, 1644–1663 (1971)CrossRefGoogle Scholar
  31. 31.
    R. Robinson, T. Gardiner, F. Innocenti, P. Woods, M. Coleman, Infrared differential absorption lidar (DIAL) measurements of hydrocarbon emissions. J. Environ. Monit. 13(8), 2213–2220 (2011)CrossRefGoogle Scholar
  32. 32.
    F. Innocenti, R. Robinson, T. Gardiner, A. Finlayson, A. Connor, Differential absorption lidar (DIAL) measurements of Landfill methane emissions. Remote Sens. 9(9), 953 (2017)CrossRefGoogle Scholar
  33. 33.
    S.M. Spuler, K.S. Repasky, B. Morley, D. Moen, M. Hayman, A.R. Nehrir, Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmos. Meas. Tech. 8, 1073–1087 (2015)CrossRefGoogle Scholar
  34. 34.
    I. Robinson, J.W. Jack, C.F. Rae, J.B. Moncrieff, Development of a laser for differential absorption lidar measurement of atmospheric carbon dioxide. Proc. SPIE 9246, 92460U (2014)ADSCrossRefGoogle Scholar
  35. 35.
    S.I. Dolgii, A.A. Nevzorov, A.V. Nevrozov, O.A. Romanovskii, O.V. Kharchenko, Intercomparison of ozone vertical profile measurements by differential absorption lidar and IASI/MetOp satellite in the upper troposphere–lower stratosphere. Remote Sens., 9(5), 447 2017ADSCrossRefGoogle Scholar
  36. 36.
    M.A. Sutton, D. Fowler, Introduction: fluxes and impacts of atmospheric ammonia on national, landscape and farm scales. Environ. Pollut. 119(1), 7–8 (2002)CrossRefGoogle Scholar
  37. 37.
    M.A. Sutton, J.W. Erisman, F. Dentener, D. Möller, Ammonia in the environment: from ancient times to the present. Environ. Pollut. 156(3), 583–604 (2008)CrossRefGoogle Scholar
  38. 38.
    S.N. Behera, M. Sharma, Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci. Total Environ. 408, 3569–3575 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    K.M. Updyke, T.B. Nguyen, S.A. Nizkorodov, Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos. Environ. 63, 22–31 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    A.F. Bouwman et al., A global high-resolution emission inventory for ammonia. Glob. Biogeochem. Cycl. 11, 561–587 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    N.T. Phan et al., Summer ammonia measurements in a densely populated Mediterranean city. Atmos. Chem. Phys. 12, 7557–7575 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    S. Wang, et al., Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci. Rep. 5, 15842 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    O. Safety, H. Administration, Ammonia [Online]. Accessed 18 Apr 2018
  44. 44.
    S. Bittman, J.R. Brook, A. Bleeker, T.W. Bruulsema, Air quality, health effects and management of ammonia emissions from fertilizers, in Air Quality Management (2013), pp. 261–277Google Scholar
  45. 45.
    C. Xiang, X. Ma, A. Liang, G. Han, W. Gong, F. Yan, Feasibility study of multi-wavelength differential absorption LIDAR for CO2 monitoring. Atmosphere 7(89), 1–17 (2016)Google Scholar
  46. 46.
    D.K. Killinger, N. Menyuk, Remote probing of the atmosphere using a CO2 DIAL system. IEEE J. Quantum Electron. QE-17(9), 1917–1929 (1981)ADSCrossRefGoogle Scholar
  47. 47.
    R.W. Fenn, S.A. Clough, W.O. Gallery, R.E. Good, F.X. Kneizys, J.D. Mill, L.S. Rothman, E.P. Shettle, F.E. Volz, Chapter 18—Optical and Infrared Properties of the AtmosphereGoogle Scholar
  48. 48.
    R.A. McClatchey, A.P. D’Agati, Atmospheric transmission of laser radiation: computer code LASER. AFGL-TR-78-0029 (1978)Google Scholar
  49. 49.
    A. Ben-David, Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species. Appl. Opt. 38(12), 2616–2624 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    The HITRAN Database [Online]. Accessed 18 Apr 2018
  51. 51.
    T. Fujii, T. Fukuchi, Laser Remote Sensing (CRC Press, Boca Raton, 2005)Google Scholar
  52. 52.
    C. Bellecci, L. De Leo, P. Gaudio, T. Lo Feudo, S. Martellucci, M. Richetta, Water vapour emission in vegetable fuel: absorption cell measurements and detection limits of our CO2 Dial system. Proc. SPIE 6367, 63670I (2006)CrossRefGoogle Scholar
  53. 53.
  54. 54.
    M. Elser, I. El-Haddad, M. Maasikmets, C. Bozzetti, R. Wolf, G. Ciarelli, J.G. Slowik, R. Ritcher, E. Teinemaa, C. Hüglin, U. Baltensperger, A.S. Prévot, High contributions of vehicular emissions 1 to ammonia in three European cities derived from mobile measurements. Atmos. Environ. 169, 36 (2017)CrossRefGoogle Scholar
  55. 55.
    R. Suarez-Bertoa, C. Astorga, Isocyanic acid and ammonia in vehicle emissions. Transport. Res. Part D 49, 259–270 (2016)CrossRefGoogle Scholar
  56. 56.
    R. Suarez-Bertoa, A.A. Zardini, C. Astorga, Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle. Atmos. Environ. 97, 43–53 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringThe University of Rome “Tor Vergata”RomeItaly
  2. 2.Department of Biomedicine and PreventionThe University of Rome “Tor Vergata”RomeItaly

Personalised recommendations