Advertisement

Applied Physics B

, 124:145 | Cite as

Axial coherent emissions controlled by an internal coupling field in an open four-level potassium system

  • N. Merlemis
  • G. Papademetriou
  • D. Pentaris
  • T. Efthimiopoulos
  • V. Vaičaitis
Article
  • 52 Downloads

Abstract

We present a theoretical model interpreting the experimental results observed under strong two-photon ns laser excitation of the \(\left| {6{{\text{S}}_{1/2}}} \right\rangle\) potassium atomic state, where emissions near the \(\left| {6{{\text{S}}_{1/2}}} \right\rangle \leftrightarrow \left| {4{{\text{P}}_{3/2}}} \right\rangle\) and \(\left| {4{{\text{P}}_{3/2}}} \right\rangle \leftrightarrow \left| {4{{\text{S}}_{1/2}}} \right\rangle\) transitions were experimentally observed. It is shown that the \(\left| {6{{\text{S}}_{1/2}}} \right\rangle \leftrightarrow \left| {4{{\text{P}}_{3/2}}} \right\rangle\) emission initially grows nonlinearly with pump intensity, while subsequently saturates and enhances the generation of radiation near the \(\left| {4{{\text{P}}_{3/2}}} \right\rangle \leftrightarrow \left| {4{{\text{S}}_{1/2}}} \right\rangle\) transition. It is found that a coherent manipulation of an open four-level system is possible by an internally generated, saturated coupling field, despite the energy decay to the continuum. The efficiency of the proposed coherent control method is managed by adjusting the pump intensity and potassium density. Finally, a general control scheme is discussed in which an external pump and an internal coupling field determine the system’s response in a cascade scheme.

Notes

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement no. 654148 Laserlab-Europe.

References

  1. 1.
    E. Koudoumas, T. Efthimiopoulos, Appl. Phys. B 55, 355 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    E. Koudoumas, T. Efthimiopoulos, ΙEEE, J. Quant. Electron. 31, 365 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    M. Katharakis, N. Merlemis, A. Serafetinides, T. Efthimiopoulos, J. Phys. B 35, 4969 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    N. Merlemis, M. Katharakis, E. Koudoumas, T. Efthimiopoulos, J. Phys. B 36, 1943 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    N. Merlemis, M. Katharakis, E. Koudoumas, T. Efthimiopoulos, SPIE 5131, 83 (2003)ADSGoogle Scholar
  6. 6.
    M. Katharakis, N. Merlemis, A. Serafetinides, T. Efthimiopoulos, SPIE, 5131, 73 (2003)ADSGoogle Scholar
  7. 7.
    V. Vaičaitis, A. Piskarskas, Opt. Comm. 117, 137 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    V. Vaičaitis, E. Gaizauskas, Phys. Rev. A 75, 033808 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    V. Vaičaitis, S. Paulikas, Appl. Phys. B 89, 267 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    S.E. Harris, J.E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    K.J. Boiler, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    J.E. Field, K.H. Hahn, S.E. Harris, Phys. Rev. Lett. 67, 3062 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    K. Hakuta, L. Marmet, B.P. Stoicheff, Phys. Rev. A 45, 5152 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    G.Z. Zhang, K. Hakuta, B.P. Stoicheff, Phys. Rev. Lett. 71, 3099 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    R.I. Thomson, B.P. Stoicheff, G.Z. Zhang, K. Hakuta, J. Quant. Opt. 6, 349 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    V.G. Arkhipkin, Opt. Spectrosc. 79, 248 (1995)ADSGoogle Scholar
  17. 17.
    Y. Zhu, Phys. Rev. A 47, 495 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhu, Opt. Comm. 105, 253 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Zhu, Opt. Comm. 107, 499 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    S.-Q. Gong, H.-G. Teng, Z.-Z. Xu, Phys. Rev. A 51, 3382 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    P.L. Zhang, Y.,-C. Wang, A.L. Schwalow, J. Opt. Soc. Am. B 1, 9 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    B.K. Clark, M. Masters, J. Huennekens, Appl. Phys. B 47, 159 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    Z.J. Jabbour, M.S. Malcuit, J. Huennekens, Appl. Phys. B 52, 281 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    T. Efthimiopoulos, M.E. Movsessian, M. Katharakis, N. Merlemis, J. Appl. Phys. 80, 2 (1996)CrossRefGoogle Scholar
  25. 25.
    S.M. Hamadi, J.A.D. Stockdale, R.N. Compto, M.S. Pindzola, Phys. Rev. A, 34, 1938, (1986)ADSCrossRefGoogle Scholar
  26. 26.
    M.A. Moore, W.R. Garrett, M.G. Payne, Opt. Comm. 68, 310 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    M.S. Malcuit, D.J. Gauthier, R.W. Boyd, Phys. Rev. Lett. 55, 1086 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    W.R. Garrett, Phys. Rev. Lett. 70, 4059 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    M.E. Movsessian, A.V. Popoyan, S.V. Shmavonyan, Int. J. of Nonlinear Opt. Phys. 1, 775 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    N. Omenetto, O.I. Matveev, W. Resto, R. Badini, B.W. Smith, T.D. Winefordner, Appl. Phys. B 58, 303 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    L. Deng, M.G. Payne, W.R. Garrett, Phys. Rep. 429, 123 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    N. Merlemis, A. Lyras, M. Katharakis, T. Efthimiopoulos, J. Phys. B At. Mol. Opt. Phys. 39, 1913 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    A. Armyras, D. Pentaris, T. Efthimiopoulos, N. Merlemis, A. Lyras, J. Phys. B At. Mol. Opt. Phys. 44, 165401 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    D. Pentaris, T. Efthimiopoulos, N. Merlemis, V. Vaičaitis, A. Lyras, Appl. Phys. B 107, 71 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    D. Pentaris, T. Efthimiopoulos, N. Merlemis, A. Lyras, J. Mod. Opt. 59, 179 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    S.N. Dixit, P. Lambropoulos, Phys. Rev. A 24, 318 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    S.N. Dixit, P. Lambropoulos, Phys. Rev. A. 27, 861 (1983)ADSCrossRefGoogle Scholar
  38. 38.
    E. Gaižauskas, D. Pentaris, T. Efthimiopoulos, V. Vaičaitis, Opt. Lett. 38 124 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    D. Pentaris, G. Papademetriou, T. Efthimiopoulos, N. Merlemis, A. Lyras, J. Mod. Opt. 60, 1855 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    G. Papademetriou, D. Pentaris, T. Efthimiopoulos, A. Lyras, J. Phys. B At. Mol. Opt. Phys. 50, 125401 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    D. Pentaris, D. Damianos, G. Papademetriou, A. Lyras, K. Steponkevičius, V. Vaičaitis, T. Efthimiopoulos, J. Mod. Opt. 63, 1301 (2016)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Surveying & Geoinformatics EngineeringUniversity of West AtticaAthensGreece
  2. 2.Laser, Nonlinear and Quantum Optics Labs, Physics DepartmentUniversity of PatrasPatrasGreece
  3. 3.Vilnius University Laser Research CenterVilniusLithuania

Personalised recommendations