Advertisement

Applied Physics B

, 124:146 | Cite as

Slow light in a hyperbolic metamaterial waveguide cladded with arbitrary nonlinear dielectric materials

  • A. W. Zeng
  • M. X. Gao
  • B. Guo
Article
  • 111 Downloads

Abstract

We have demonstrated a hyperbolic metamaterial (HMM) waveguide cladded with arbitrary nonlinear dielectric materials to explore the properties of slow light. The HMM proposed in this paper is assumed as a metal–dielectric stack which can lead to slow light phenomena while being cladded by dielectric materials. Both the asymmetric (i.e., linear–HMM–linear case and nonlinear–HMM–linear case) and symmetric (i.e., linear–HMM–linear case and nonlinear–HMM–nonlinear case) dielectric structures are considered to examine the properties of slow light in the paper. The dispersion relations which are required to investigate the properties of slow light are derived and presented in detail. The results show that the metal filling factor, the dielectric permittivities, and the arbitrary nonlinearity have significantly changed the characteristics of slow light. Parameter dependence of the effects is calculated and discussed.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) under Grant no. 11575135.

References

  1. 1.
    A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Nat. Photon. 7, 948 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Prog. Quantum Electron. 40, 1 (2015)CrossRefGoogle Scholar
  3. 3.
    Z. Jacob, L.V. Alekseyev, E. Narimanov, Opt. Express 14, 8247 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Govyadinov, V.A. Podolskiy, Phys. Rev. B 73, 155108 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    G.A. Wurtz, R. Pollard, W. Hendren, G.P. Wiederrecht, D.J. Gosztola, V.A. Podolskiy, A.V. Zayats, Nat. Nanotechnol. 6, 107 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    J. Yao, X. Yang, X. Yin, G. Bartal, X. Zhang, Proc. Nat. Acad. Sci. 108, 11327 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    B. Guo, Chin. Phys. Lett. 30, 105201 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    L. Ferrari, D. Lu, D. Lepage, Z. Liu, Opt. Express 22, 4301 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Guo, Z. Jacob, Opt. Express 21, 15014 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    T. Baba, Nat. Photon. 2, 465 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    T.F. Krauss, Nat. Photon. 2, 448 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y.J. Ding, F.J. Bartoli, Proc. Nat. Acad. Sci. 108, 5169 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Q. Gan, J.B. Filbert, Appl. Phys. Lett. 98, 251103 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    K.L. Tsakmakidis, A.D. Boardman, O. Hess, Nature 450, 397 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    S. He, Y. He, Y. Jin, Sci. Rep. 2, 583 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, B. Lee, Opt. Express 18, 598 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M.S. Jang, H. Atwater, Phys. Rev. Lett. 107, 207401 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S. Bhushan, R.K. Easwaran, Appl. Opt. 56, 3817 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    C. Monat, M. de Sterke, B.J. Eggleton, J. Opt. 12, 104003 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S. Pu, S. Dong, J. Huang, J. Opt. 16, 045102 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    A. Tyszka-Zawadzka, B. Janaszek, P. Szczepanski, Opt. Express 25, 7263 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Cui, K.H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N.X. Fang, Nano Lett. 12, 1443 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, Sci. Rep. 3, 1249 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    B. Li, Y. He, S. He, Appl. Phys. Express 8, 082601 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    T. Jiang, J. Zhao, Y. Feng, Opt. Express 17, 170 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    A.W. Zeng, B. Guo, Opt. Quantum Electron. 49, 200 (2017)CrossRefGoogle Scholar
  28. 28.
    R.W. Boyd, Nonlinear Optics (Academic Press, Burlington, 2008)Google Scholar
  29. 29.
    T.C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, Oxford, 1999)Google Scholar
  30. 30.
    D. Mihalache, G.I. Stegeman, A.D. Boardman, T. Twardowski, C.T. Seaton, E.M. Wright, R. Zanoni, Opt. Lett. 12, 187 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    H. Yin, C. Xu, P.M. Hui, Appl. Phys. Lett. 94, 221102 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    P. Shekhar, J. Atkinson, Z. Jacob, Nano Converg. 1, 14 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Reza, M.M. Dignam, S. Hughes, Nature 455, E10 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsWuhan University of TechnologyWuhanChina

Personalised recommendations