Advertisement

Applied Physics B

, 124:139 | Cite as

Design of second-order 121.6-nm narrowband minus filters using asymmetrically apodized thickness modulation

  • Xiaodong Wang
  • Bo Chen
  • Tonglin Huo
  • Hongjun Zhou
Article

Abstract

An asymmetrically apodized thickness modulation design method is proposed to design second-order narrowband minus filters at 121.6 nm. The sine-wave, linear, quintic functions are used as amplitude envelope to apodize the thickness modulation design. LaF3/MgF2 minus filters at 121.6 nm with a bandwidth of 5 nm are obtained. This designed filter will be fabricated for utilizing in Lyman-alpha coronagraph and imager installed in Lyman-alpha Solar Telescope, which will be launched by China in 2021.

Notes

Acknowledgements

This work is supported by the Joint Research Fund in Astronomy (U1531106) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Science (CAS), partially supported by NSFC (Grant No.11427803), and partially supported by the Strategic Priority Research Program of Chinese Academy of Science (CAS), Grant No. XDA15320103.

References

  1. 1.
    B. Li, H. Li, S. Zhou, B. Jiang, Proc. of SPIE 9042, 90420Y, (2013)Google Scholar
  2. 2.
    S. Vives, P. Lamy, J. Vial, Proc. of SPIE 5171, pp. 298–306, (2004)Google Scholar
  3. 3.
    R.B. Hoover, T.W. Barbee, J.P.C. Baker, J.F. Lindblom, M.J. Allen, C.D. Forrest, C. Kankelborg, R.H. O’Neal, E. Pairis, A.B.C. Walker, Opt. Eng. 29(10), 281–290 (1990)Google Scholar
  4. 4.
    J.H. Park, M. Zukic, M. Wilson, C.E. Keffer, D.G. Torr, R.B. Hoover, Opt. Eng. 35(5), 1479–1482 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    H.A. Macleod, Thin-Film Optical Filters, 4th edn. (CRC Press, Boca Raton, 2010)Google Scholar
  6. 6.
    A. Thelen, J. Opt. Soc. Am. 61, 365–369 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    B.E. Perilloux, Appl. Opt. 37, 3527–3532 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    B.E. Perilloux, Appl. Opt. 38, 2911–2915 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    B.E. Perilloux, Thin-Film Design: Modulated Thickness and Other Stopband Design Methods, (SPIE Press, Bellingham, 2002)CrossRefGoogle Scholar
  10. 10.
    B.G. Bovard, Appl. Opt. 29, 24–30 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    W.H. Southwell, R.L. Hall, Appl. Opt. 28, 2949–2951 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    W.H. Southwell, Appl. Opt. 28, 5091–5094 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Zhang, Y.J. Xie, X.B. Cheng, H.F. Jiao, Z.S. Wang, Appl. Opt. 52(23), 5788–5793 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J.L. Zhang, A.V. Tikhonravov, M.K. Trubetskov, Y.L. Liu, X.B. Cheng, Z.S. Wang, Opt. Express 21(18), 21523–21529 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A.V. Tikhonravov, M.K. Trubetskov, OptiLayer thin film software. http://www.optilayer.com. Accessed 15 June 2017
  16. 16.
    M. Bischoff, O. Stenzel, K. Friedrich, S. Wilbrandt, D. Gäbler, S. Mewes, N. Kaiser, Plasma-assisted deposition of metal fluoride coatings and modeling the extinction coefficient of as-deposited single layers. Appl. Opt. C232, 50 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations