Advertisement

Applied Physics B

, 124:147 | Cite as

High-energy picosecond kHz optical parametric oscillator/amplifier tunable between 3 and 3.5 µm

  • D. Chuchumishev
  • A. Trifonov
  • B. Oreshkov
  • X. Xu
  • I. Buchvarov
Article
  • 159 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

We present a mid-IR tunable high-energy kHz optical parametric oscillator/amplifier (OPO/OPA) based on periodically poled stoichiometric lithium tantalate (PPSLT) nonlinear crystals. These two frequency conversion stages are pumped by a 1-µm-Nd-based master oscillator power amplifier (MOPA) system generating 800 ps pulses at 0.5 kHz with energy scalable up to ~ 40 mJ. The OPO/OPA stages are temperature tunable between 3 and 3.5 µm and provide pulses with energy 4.1 mJ and pulse duration of 600 ps.

Notes

Acknowledgements

We acknowledge financial support from Bulgarian National Science Fund under grant number DNTS 01/9/2016, bilateral research project R.Bulgaria–P.R.China. We are grateful to Stuart Samuelson and Dimitar Shumov at Deltronic Crystal Industries NJ, USA for manufacturing of wide-aperture PPSLT elements.

References

  1. 1.
    G.S. Edwards, R.H. Austin, F.E. Carroll, M.L. Copeland, M.E. Couprie, W.E. Gabella, R.F. Haglund, B.A. Hooper, M.S. Hutson, E.D. Jansen, K.M. Joos, D.P. Kiehart, I. Lindau, J. Miao, H.S. Pratisto, J.H. Shen, Y. Tokutake, van der A.F.G. Meer, A. Xie, Rev. Sci. Instrum. 74, 3207 (2003).  https://doi.org/10.1063/1.1584078 ADSCrossRefGoogle Scholar
  2. 2.
    A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003).  https://doi.org/10.1021/cr010379n CrossRefGoogle Scholar
  3. 3.
    J.I. Youn, P. Sweet, G.M. Peavy, V. Venugopalan, Lasers Surg. Med. 38, 218 (2006).  https://doi.org/10.1002/lsm.20288 CrossRefGoogle Scholar
  4. 4.
    S. Amini-Nik, D. Kraemer, M.L. Cowan, K. Gunaratne, P. Nadesan, B.A. Alman, R.J.D. Miller, PLoS One 5(9), e13053 (2010).  https://doi.org/10.1371/journal.pone.0013053 ADSCrossRefGoogle Scholar
  5. 5.
    A. Nierlich, D. Chuchumishev, E. Nagel, K. Marinova, S. Philipov, T. Fiebig, I. Buchvarov, C.P. Richter, Proc. SPIE 8926, Photonic Therapeutics and Diagnostics X, 89262H (2014).  https://doi.org/10.1117/12.2049339
  6. 6.
    G.S. Edwards, M.S. Hutson, S. Hauger, Heat Diffusion and Chemical Kinetics in Mark-III FEL Tissue Ablation. Proc. SPIE 4633, pp. 184–193 (2002).  https://doi.org/10.1117/12.461378
  7. 7.
    J.T. Walsh, T.F. Deutsch, IEEE Trans. Biomed. Eng. 36, 1195 (1989).  https://doi.org/10.1109/10.42114 CrossRefGoogle Scholar
  8. 8.
    M.L. Wolbarsht, IEEE J. Quantum Electron. 20, 1427 (1984).  https://doi.org/10.1109/JQE.1984.1072328 ADSCrossRefGoogle Scholar
  9. 9.
    A. Böttcher, S. Kucher, R. Knecht, N. Jowett, P. Krötz, R. Reimer, U. Schumacher, S. Anders, A. Münscher, C.V. Dalchow, R.J.D. Miller, Eur. Arch. Otorhinolaryngol. 272, 941 (2015).  https://doi.org/10.1007/s00405-015-3501-4 CrossRefGoogle Scholar
  10. 10.
    G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. Oday, Nature 371, 416 (1994).  https://doi.org/10.1038/371416a0 ADSCrossRefGoogle Scholar
  11. 11.
    I.T. Sorokina, K.L. Vodopyanov (eds). Solid-State Mid-Infrared Laser Sources (Springer, Berlin Heidelberg, 2003), ISBN 978-3-540-36491-7Google Scholar
  12. 12.
    N. Dixit, R. Mahendra, O.P. Naraniya, A.N. Kaul, A.K. Gupta, Opt. Laser Technol. 42, 18 (2010).  https://doi.org/10.1016/j.optlastec.2009.04.012 ADSCrossRefGoogle Scholar
  13. 13.
    J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, T. Taira, Opt. Lett. 33, 1699 (2008).  https://doi.org/10.1364/OL.33.001699 ADSCrossRefGoogle Scholar
  14. 14.
    H. Ishizuki, T. Taira, Opt. Express 18, 253 (2010).  https://doi.org/10.1364/OE.18.000253 ADSCrossRefGoogle Scholar
  15. 15.
    M. Katz, P. Blau, B. Shulga: Proc. SPIE 6875, p. 687504-14 (2008).  https://doi.org/10.1117/12.763190
  16. 16.
    D. Chuchumishev, A. Gaydardzhiev, T. Fiebig, I. Buchvarov, Opt. Lett. 38, 3347 (2013).  https://doi.org/10.1364/OL.38.003347 ADSCrossRefGoogle Scholar
  17. 17.
    V. Evtuhov, A.E. Siegman, Appl. Opt. 4, 142 (1965).  https://doi.org/10.1364/AO.4.000142 ADSCrossRefGoogle Scholar
  18. 18.
    M. Ostermeyer, G. Klemz, P. Kubina, R. Menzel, Appl. Opt. 41, 7573 (2002).  https://doi.org/10.1364/AO.41.007573 ADSCrossRefGoogle Scholar
  19. 19.
    B. Oreshkov, D. Chuchumishev, H. Iliev, A. Trifonov, T. Fiebig, C.P. Richter, I. Buchvarov, CLEO 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper JW2A.84.  https://doi.org/10.1364/CLEO_AT.2014.JW2A.84
  20. 20.
    S. Brosnan, R.L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).  https://doi.org/10.1109/JQE.1979.1070027 ADSCrossRefGoogle Scholar
  21. 21.
    A. Siegman, M. Dowley, Proc. Optical Society of America 17, p. MQ1 (1998).  https://doi.org/10.1364/DLAI.1998.MQ1
  22. 22.
    A. Seilmeier, K. Spanner, A. Laubereau, W. Kaiser, Opt. Commun. (1978).  https://doi.org/10.1016/0030-4018(78)90001-9 Google Scholar
  23. 23.
    R.A. Baumgartner, R.L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).  https://doi.org/10.1109/JQE.1979.1070043 ADSCrossRefGoogle Scholar
  24. 24.
    I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, G. Gadret, Appl. Phys. B 96, 423 (2009).  https://doi.org/10.1007/s00340-009-3502-3 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsSofia UniversitySofiaBulgaria
  2. 2.IBPhotonics LtdSofiaBulgaria
  3. 3.Jiangsu Normal UniversityXuzhouChina
  4. 4.ITMO UniversitySaint PetersburgRussia

Personalised recommendations