Applied Physics B

, 124:137 | Cite as

Analogue of Fano resonance and electromagnetically induced transparency in a graphene strip-ring compact resonator

  • Buzheng WeiEmail author
  • Shuisheng Jian


A compact graphene strip-ring hybrid resonator working in the mid-infrared regime is proposed as an analogue of Fano resonator or electromagnetically induced transparency. The dipolar surface plasmon resonance induced by the ring interferes with the x-polarized strip resonance forming a symmetric or asymmetric transparency window within the absorption profile. The spectral response can be modulated not only by the Fermi energy level of graphene, but also the geometry shape of the configuration. The sensitivity reaches 2450 nm/RIU and the light in the transparency window is slowed down to over 1/1090 times the speed in vacuum. The analytic analysis is in accordance with the 3D simulation results. Our compact design may have potential view in optical sensors, optical switches and light storage field.


  1. 1.
    U. Fano, Phys. Rev. 124, 1866 (1961)ADSCrossRefGoogle Scholar
  2. 2.
    N. Papasimakis, N.I. Zheludev, Opt. Photon. News 20, 22 (2009)CrossRefGoogle Scholar
  3. 3.
    B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707–715 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    S. Fan, W. Suh, J.D. Joannopoulos, J. Opt. Soc. Am. A: 20, 569 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    B. Peng, S.K. Özdemir, W. Chen, F. Nori, L. Yang, Nat. Commun. 5, 5082 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    M. Rahmani, B. Luk’yanchuk, M. Hong, Laser Photon. Rev. 7, 329 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    K.J. Boller, A. Imamoğlu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Zhang, G.I. Ng, T. Hu, H. Qiu, X. Guo, W. Wang, M.S. Rouifed, C. Liu, H. Wang, Appl. Phys. Lett. 111, 081105 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    B. Wei, S. Jian, J. Opt. 19, 115001 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    B. Wei, S. Jian, J. Phys. D Appl. Phys. 50, 355101 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Wei, H. Liu, G. Ren, Y. Yang, S. Ye, L. Pei, S. Jian, Phys. Lett. A 381, 160 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    B. Wei, S. Jian, J. Nanophoton. 11, 026011 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    B. Wei, S. Jian, Opt. Commun. 402, 66 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    J. Horng, C.F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H.A. Bechtel, M. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Phys. Rev. B 83, 165113 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A. Vakil, N. Engheta, Science 332, 1291 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    M. Jablan, H. Buljan, M. Soljačiéc, Phys. Rev. B 80, 245435 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    P.Y. Chen, A. Al, ACS Nano 5, 5855 (2011)CrossRefGoogle Scholar
  20. 20.
    L.A. Falkovsky, S.S. Pershoguba, Phys. Rev. B 76, 153410 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    G.W. Hanson, I.E.E.E. Trans, Antennas Propag. 56, 747 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    D.H. Chae, T. Utikal, S. Weisenburger, H. Giessen, K.V. Klitzing, M. Lippitz, J. Smet, Nano Lett. 11, 1379–1382 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    N.K. Emani, T.F. Chung, A.V. Kildishev, V.M. Shalaev, Y.P. Chen, A. Boltasseva, Nano Lett. 14, 78–82 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    G. Zheng, X. Zou, Y. Chen, L. Xu, W. Rao, Opt. Mater. 66, 171 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A.K. Azad, Nanoscale 7, 12682 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    B. Wei, Y. Yang, S. Yao, H. Xiao, S. Jian, Appl. Phys. B 123, 70 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    M. Amin, M. Farhat, H. Baĝci, Sci. Rep. 3, 2105 (2013)CrossRefGoogle Scholar
  28. 28.
    S.J. Buzheng Wei, Opt. Eng. 56, 56 (2017)Google Scholar
  29. 29.
    A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, M. Shur, Opt. Lett. 41(22), 5333 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    F. Miyamaru, M. Tanaka, M. Hangyo, Phys. Rev. B 74, 153416 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Binfeng, H. Guohua, C. Jiawei, C. Yiping, Plasmonics 9, 691 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Geim, K. Novoselov, Nat. Mater. 6, 183–191 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    K. Novoselov, V. Fal’ko, L. Colombo, P. Gellert, M. Schwab, K. Kim, Nature 490, 192–200 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    G.W. Hanson, J. Appl. Phys. 103, 064302 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    L.A. Falkovsky, A.A. Varlamov, Eur. Phys. J. B 56, 281 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    C. Wu, A.B. Khanikaev, R. Adato, N. Arju, A.A. Yanik, H. Altug, G. Shvets, Nat. Mater. 11, 69–75 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of All Optical Network and Advanced Telecommunication Network of EMC, School of Electronic Information and EngineeringBeijing Jiaotong UniversityBeijingChina
  2. 2.Institute of Lightwave TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations