Advertisement

Applied Physics B

, 124:133 | Cite as

A narrowband infrared source based on orientation-patterned GaAs for standoff detection of chemicals

  • J. Armougom
  • J.-M. Melkonian
  • J.-B. Dherbecourt
  • M. Raybaut
  • A. Grisard
  • E. Lallier
  • B. Gérard
  • B. Faure
  • G. Souhaité
  • B. Boulanger
  • A. Godard
Article
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

This paper presents our work on a pulsed single-frequency tunable optical parametric oscillator based on orientation-patterned gallium arsenide. Owing to crystal temperature tuning, this source covers the 10.2–11.2 and 7.6–8.6 \(\upmu \hbox {m}\) ranges in single-longitudinal mode operation with a linewidth below 30 MHz. Standoff detection of ammonia around 10.35 and 10.5 \(\upmu \hbox {m}\) is performed by implementing this source in an Integrated Path Differential Absorption Lidar (IP-DIAL) setup.

Notes

Acknowledgements

We acknowledge the French Agence Nationale de la Recherche and Direction Générale de l’Armement for partial funding (ANR-11 ASTR-016). The authors would like to thank Jean-François Lampin and his team from IEMN (Lille, France) for lending us a CW DFB-QCL.

References

  1. 1.
    R.A. Robinson, P.T. Woods, M.J.T. Milton, Proc. SPIE 2506, 140–149 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    P.A. Martin, Chem. Soc. Rev. 31, 201–210 (2002)CrossRefGoogle Scholar
  3. 3.
    M.W. Sigrist, R. Bartlome, D. Marinov, J.M. Rey, D.E. Vogler, H. Wächter, Appl. Phys. B Lasers Optics 90, 289–300 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    J. Hodgkinson, R.P. Tatam, Meas. Sci. Technol. 24(1), 012004 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    G.A. Wagner, D.F. Plusquellic, Appl. Opt. 55(23), 6292–6310 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    K.G. Hay, O. Norberg, E. Normand, H. Onnerud, P. Black, Adv. Opt. Technol. 6(2), 67–73 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    H. Kariminezhad, P. Parvin, F. Borna, A. Bavali, Opt. Lasers Eng. 48(4), 491–499 (2010)CrossRefGoogle Scholar
  8. 8.
    A.S. Grishkanich, A.P. Zhevlakov, V.G. Bespalov, V.V. Elizarov, S.V. Kascheev, A.A. Ilinskiy, Proc. SPIE 9274, 92741L (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M.E. Webber, M. Pushkarsky, C.K.N. Patel, J. Appl. Phys. 97, 11 (2005)CrossRefGoogle Scholar
  10. 10.
    C.W. Van Neste, L.R. Senesac, T. Thundat, Anal. Chem. 81(5), 1952–1956 (2009)CrossRefGoogle Scholar
  11. 11.
    B.J. Orr, Infrared LIDAR Applications in Atmospheric Monitoring (Wiley, Oxfrod, 2006)Google Scholar
  12. 12.
    J. Kadlčák, Proceedings of the 5th International Symposium Protection Against Chemical and Biological Warfare Agents p. 237 (1995)Google Scholar
  13. 13.
    P. Adam, J.L. Duvent, S.W. Gotoff, Proc. SPIE 3127, 212–223 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    J.V. Cernius, D.A. Elser, J. Fox, Proc. SPIE 1062, 164–171 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    D.B. Cohn, E.J. Griffin, L.F. Klaras, M.E. Ehritz, C.R. Swim, J.A. Fox, Proc. SPIE 4378, 34–42 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    C .B. Carlisle, J .E. van derLaan, L .W. Carr, P. Adam, J .P. Chiaroni, Appl. Opt. 34(27), 6187–6200 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Stand-Off Detector DD-CWA-SM. http://www.gammatech.hu
  18. 18.
    A. Pal, C.D. Clark, M. Sigman, D.K. Killinger, Appl. Opt. 48(4), B145–B150 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Mukherjee, S.V. der Porten, C.K.N. Patel, Appl. Opt. 49(11), 2072–2078 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487(1–3), 1–18 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    C.W. Van Neste, L.R. Senesac, T. Thundat, Appl. Phys. Lett. 92(23), 234102 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, F. Schnürer, Opt. Eng. 49(11), 111127–111127 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    X. Chen, D. Guo, F.S. Choa, C.C. Wang, S. Trivedi, A.P. Snyder, G. Ru, J. Fan, Appl. Opt. 52(12), 2626–2632 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    A. Goyal, T. Myers, C.A. Wang, M. Kelly, B. Tyrrell, B. Gokden, A. Sanchez, G. Turner, F. Capasso, Opt. Express 22(12), 14392–14401 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Q. Hu, J.S.K. Lim, H. Liu, Y. Fu, Opt. Express 24(17), 19148–19156 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    N.A. Macleod, F. Molero, D. Weidmann, Opt. Express 23(2), 912–928 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    J. Sun, J. Ding, N. Liu, G. Yang, J. Li, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 191, 532–538 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    J.S. Li, B. Yu, H. Fischer, W. Chen, A.P. Yalin, Rev. Sci. Instrum. 86(3), 031501 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    A. Bakkland, H. Fonnum, E. Lippert, M.W. Haakestad, in: Conference on Lasers and Electro-Optics (OSA 2016), pp. 25–26Google Scholar
  30. 30.
    S. Chandra, T.H. Allik, G. Catella, R. Utano, J.A. Hutchinson, Appl. Phys. Lett. 71(5), 584–586 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    R.K. Feaver, R.D. Peterson, P.E. Powers, Opt. Express 21(13), 16104–16110 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A. Tyazhev, D. Kolker, G. Marchev, V. Badikov, D. Badikov, G. Shevyrdyaeva, V. Panyutin, V. Petrov, Opt. Lett. 37(19), 4146–4148 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    S. Vasilyev, S. Schiller, A. Nevsky, A. Grisard, D. Faye, E. Lallier, Z. Zhang, a J Boyland, J .K. Sahu, M. Ibsen, W .A. Clarkson, Opt. Lett. 33(13), 1413–1415 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    J. Armougom, J.M. Melkonian, J.B. Dherbercourt, M. Raybaut, A. Godard, R.S. Coetzee, A. Zukauskas, V. Pasiskevicius, 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference p. CD P.32 (2017)Google Scholar
  35. 35.
    V. Vaicikauskas, V. Kabelka, Z. Kuprionis, M. Kaucikas, Proc. SPIE 5988, 5988–5988 – 6 (2005)ADSGoogle Scholar
  36. 36.
    G. Mennerat, P. Kupecek, Advanced Solid State Lasers (OSA, 1998), pp. 15–18Google Scholar
  37. 37.
    J. Yuan, Y. Chen, X. Duan, B. Yao, T. Dai, Y. Ju, Opt. Laser Technol. 92, 1–4 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    T. Skauli, K.L. Vodopyanov, T.J. Pinguet, A. Schober, O. Levi, L.A. Eyres, M.M. Fejer, J.S. Harris, B. Gerard, L. Becouarn, E. Lallier, G. Arisholm, Opt. Lett. 27(8), 628–630 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    E. Lallier, M. Brevignon, J. Lehoux, Opt. Lett. 23(19), 1511–1513 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    A. Grisard, E. Lallier, B. Gérard, Opt. Mater. Express 2(8), 1020–1025 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    C. Kieleck, M. Eichhorn, A. Hirth, D. Faye, E. Lallier, Opt. Lett. 34(3), 262–264 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    P.S. Kuo, K.L. Vodopyanov, M.M. Fejer, D.M. Simanovskii, X. Yu, J.S. Harris, D. Bliss, D. Weyburne, Opt. Lett. 31(1), 71–73 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    K.L. Vodopyanov, O. Levi, P.S. Kuo, T.J. Pinguet, J.S. Harris, M.M. Fejer, B. Gerard, L. Becouarn, E. Lallier, Opt. Lett. 29(16), 1912–1914 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    K.L. Vodopyanov, I. Makasyuk, P.G. Schunemann, Opt. Express 22(4), 4131–4136 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    J. Wueppen, S. Nyga, B. Jungbluth, D. Hoffmann, Opt. Lett. 41(18), 4225–4228 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Q. Clément, J.M. Melkonian, J.B. Dherbecourt, M. Raybaut, A. Grisard, E. Lallier, B. Gérard, B. Faure, G. Souhaité, A. Godard, Opt. Lett. 40(12), 2676–2679 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    A. Godard, M. Raybaut, M. Lefebvre, Nested Cavity Optical Parametric Oscillators–A Tunable Frequency Synthesizer for Gas Sensing, Chap. Environment: Trace Gas Monitoring (Wiley, Oxford, 2006)Google Scholar
  48. 48.
    A. Berrou, M. Raybaut, A. Godard, M. Lefebvre, Appl. Phys. B 98 (2010)Google Scholar
  49. 49.
    J. Bjorkholm, A. Ashkin, R. Smith, IEEE J. Quantum Electron. 6(12), 797–799 (1970)ADSCrossRefGoogle Scholar
  50. 50.
    J. Barrientos Barria, A. Dobroc, H. Coudert-Alteirac, M. Raybaut, N. Cézard, J.B. Dherbecourt, T. Schmid, B. Faure, G. Souhaité, J. Pelon, J.M. Melkonian, A. Godard, M. Lefebvre, Appl. Phys. B 117(1), 509–518 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    J. Barrientos-Barria, D. Mammez, E. Cadiou, J.B. Dherbecourt, M. Raybaut, T. Schmid, A. Bresson, J.M. Melkonian, A. Godard, J. Pelon, M. Lefebvre, Opt. Lett. 39(23), 6719–6722 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    J.A. Giordmaine, R.C. Miller, Phys. Rev. Lett. 14(24), 973–976 (1965)ADSCrossRefGoogle Scholar
  53. 53.
    B. Scherrer, I. Ribet, A. Godard, E. Rosencher, M. Lefebvre, J. Opt. Soc. Am. B 17(10), 1716 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, IEEE J. Quantum Electron. 28(11), 2631–2654 (1992)ADSCrossRefGoogle Scholar
  55. 55.
    A. Grisard, B. Faure, G. Souhaité, E. Lallier, Adv. Solid State Lasers, ATu2A.39 (2014)Google Scholar
  56. 56.
    B. Hardy, A. Berrou, S. Guilbaud, M. Raybaut, A. Godard, M. Lefebvre, Opt. Lett. 36(5), 678–680 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    S.L. Bartelt-Hunt, D.R.U. Knappe, M.A. Barlaz, Crit. Rev. Environ. Sci. Technol. 38(2), 112–136 (2008)CrossRefGoogle Scholar
  58. 58.
    R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, J. Opt. Soc. Am. B 21(9), 1577–1585 (2004)ADSCrossRefGoogle Scholar
  59. 59.
    L. Cabaret, C. Drag, Eur. Phys. J. Appl. Phys. 51(2), 20702 (2010)CrossRefGoogle Scholar
  60. 60.
    M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, G. Ehret, Appl. Phys. B 96(1), 201 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    J.A. Fox, C.R. Gautier, J.L. Ahl, Appl. Opt. 27(5), 847–855 (1988)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Liu, J. Lin, G. Huang, Y. Guo, C. Duan, J. Opt. Soc. Am. B 18(5), 666–672 (2001)ADSCrossRefGoogle Scholar
  63. 63.
    G. Bloom, A. Grisard, E. Lallier, C. Larat, M. Carras, X. Marcadet, Opt. Lett. 35(4), 505–507 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    Q. Clément, J.M. Melkonian, J. Barrientos-Barria, J.B. Dherbecourt, M. Raybaut, A. Godard, Opt. Lett. 38(20), 4046–4049 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    B. Hardy, M. Raybaut, J.B. Dherbecourt, J.M. Melkonian, A. Godard, A.K. Mohamed, M. Lefebvre, Appl. Phys. B 107(3), 643–647 (2012)ADSCrossRefGoogle Scholar
  66. 66.
    E. Cadiou, D. Mammez, J.B. Dherbecourt, G. Gorju, J. Pelon, J.M. Melkonian, A. Godard, M. Raybaut, Opt. Lett. 42(20), 4044–4047 (2017)ADSCrossRefGoogle Scholar
  67. 67.
    J. Armougom, J.M. Melkonian, M. Raybaut, J.B. Dherbecourt, G. Gorju, A. Godard, R. Cotzee, V. Pašiškevičius, J. Kadlčák, High-Brightness Sources and Light-driven Interactions, p. MM4C.7 (2018)Google Scholar
  68. 68.
    F. Gutty, A. Grisard, A. Joly, C. Larat, D. Papillon-Ruggeri, E. Lallier, Opt. Express 23(5), 6754–6762 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    M. Charbonneau-Lefort, B. Afeyan, M.M. Fejer, J. Opt. Soc. Am. B 25(4), 463–480 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    Z.G. Figen, O. Aytür, O. Arikan, Appl. Opt. 55(9), 2404–2412 (2016)ADSCrossRefGoogle Scholar
  71. 71.
    V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J.M. Melkonian, A. Godard, Opt. Express 21(23), 28886–28891 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. Armougom
    • 1
  • J.-M. Melkonian
    • 1
  • J.-B. Dherbecourt
    • 1
  • M. Raybaut
    • 1
  • A. Grisard
    • 2
  • E. Lallier
    • 2
  • B. Gérard
    • 3
  • B. Faure
    • 4
  • G. Souhaité
    • 4
  • B. Boulanger
    • 5
  • A. Godard
    • 1
  1. 1.ONERA-The French Aerospace LabPalaiseau CedexFrance
  2. 2.Thales Research and TechnologyPalaiseauFrance
  3. 3.III-V LabPalaiseauFrance
  4. 4.Teem PhotonicsMeylanFrance
  5. 5.Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NéelGrenobleFrance

Personalised recommendations