Applied Physics B

, 124:127 | Cite as

Lasing in dye-infiltrated nanoporous anodic alumina membranes

  • Anjani Kumar TiwariEmail author
  • Saleem Shaik
  • S. Anantha Ramakrishna


Laser emission is obtained from a slab of nanoporous anodic alumina on an aluminum sheet, infiltrated by rhodamine 6G dye in methanol and pumped by 532 nm, 700 ps laser pulses. The nanostructured surface maintains a continuous flow of the dye solution by wetting and evaporation of methanol. Emission along the stripe of the pump light was measured in a 30 μm-thick nanoporous slab to have sharp peaks with line widths < 1.5 nm and spacing of about 2 nm. The output emission is polarized predominantly parallel to the slab and random lasing effects due to scattering in the nanoporous alumina are minimal. We achieve stable lasing in a 1.8 μm-thick nanoporous membrane by depositing a thin layer of gold on the top facet of the membrane. The improved reflectivity from the gold-coated surface further assists the guiding of emitted light along the lasing stripe. The minuscule size of our dye-infiltrated nanoporous membrane resembling microchip lasers is potentially applicable as micro-fluidic lasers for lab-on-a-chip devices.



We acknowledge financial support through project No. DST/PHY/20130147 from the Department of Science and Technology, India. AKT also thanks DST for the INSPIRE Faculty Award (DST/INSPIRE/04/2016/002068).


  1. 1.
    J.J. Zayhowski, A. Mooradian, Single-frequency microchip Nd lasers. Opt. Lett. 14, 24–26 (1989)CrossRefADSGoogle Scholar
  2. 2.
    J.J. Zayhowski, Microchip lasers. Opt. Mater. 11, 255–267 (1999)CrossRefADSGoogle Scholar
  3. 3.
    K.J. Vahala, Optical microcavities. Nature (London) 424, 839–846 (2003)CrossRefADSGoogle Scholar
  4. 4.
    P.S.J. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)CrossRefADSGoogle Scholar
  5. 5.
    R.V. Nair, A.K. Tiwari, S. Mujumdar, B.N. Jagatap, Photonic-band-edge-induced lasing in self-assembled dye-activated photonic crystals. Phys. Rev. A 85, 023844 (2012)CrossRefADSGoogle Scholar
  6. 6.
    S.A. Ramakrishna, S. Guenneau, S. Enoch, G. Tayeb, B. Gralak, Confining light with negative refraction. Phys. Rev. A 75, 063830 (2007)CrossRefADSGoogle Scholar
  7. 7.
    J. Bingi, V.M. Murukeshan, Plasmonic nanopillar coupled two-dimensional random medium for broadband light trapping and harvesting. J. Nanophotonics 9(1), 093061 (2015)CrossRefADSGoogle Scholar
  8. 8.
    V.S. Letokhov, Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 26, 835–840 (1968)ADSGoogle Scholar
  9. 9.
    N.M. Lawandy, R.M. Balachandran, A.S.L. Gomes, E. Sauvain, Laser action in strongly scattering media. Nature 368, 436–438 (1994)CrossRefADSGoogle Scholar
  10. 10.
    S. Mujumdar, M. Ricci, R. Torre, D.S. Wiersma, Amplified extended modes in random lasers. Phys. Rev. Lett. 93, 053903 (2004)CrossRefADSGoogle Scholar
  11. 11.
    C. Vanneste, P. Sebbah, H. Cao, Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett. 98, 143902 (2007)CrossRefADSGoogle Scholar
  12. 12.
    D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008)CrossRefGoogle Scholar
  13. 13.
    B.N.S. Bhaktha, X. Noblin, N. Bachelard, P. Sebbah, Optofluidic random laser. Appl. Phys. Lett. 101, 151101 (2012)CrossRefADSGoogle Scholar
  14. 14.
    A.K. Tiwari, B. Chandra, R. Uppu, S. Mujumdar, Collective lasing from a linear array of dielectric microspheres with gain. Opt. Express 20, 6598–6603 (2012)CrossRefADSGoogle Scholar
  15. 15.
    A.K. Tiwari, S. Mujumdar, Random lasing over gap states from a quasi-one-dimensional amplifying periodic-on-average random superlattice. Phys. Rev. Lett. 111, 233903 (2013)CrossRefADSGoogle Scholar
  16. 16.
    A.K. Tiwari, K.S. Alee, R. Uppu, S. Mujumdar, Single-mode, quasi-stable coherent random lasing in an amplifying periodic-on-average random system. Appl. Phys. Lett. 104, 131112 (2014)CrossRefADSGoogle Scholar
  17. 17.
    F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, Z. Lv, Polarization and polarization control of random lasers from dye-doped nematic liquid crystals. Opt. Lett. 38, 1557–1559 (2013)CrossRefADSGoogle Scholar
  18. 18.
    J.H. Lin, Y.L. Hsiao, B.Y. Ciou, S.H. Lin, Y.H. Chen, J.J. Wu, Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary. IEEE Photonics J. 7, 1501809 (2015)Google Scholar
  19. 19.
    S.H. Lin, P.Y. Chen, Y.H. Li, C.H. Chen, J.H. Lin, Y.H. Chen, S.Y. Tsay, J.J. Wu, Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells. IEEE Photonic J. 9, 2 (2017)Google Scholar
  20. 20.
    H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)CrossRefADSGoogle Scholar
  21. 21.
    H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, K. Nishio, Lasing from two-dimensional photonic crystals using anodic porous alumina. Adv. Mater. 18(2), 213–216 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Loerke, F. Marlow, Laser emission from dyedoped mesoporous silica fibers. Adv. Mater. 14(23), 1745–1749 (2002)CrossRefGoogle Scholar
  23. 23.
    J. Lü, T. Fan, G. Chen, Random laser action in dye doped nanoporous polymeric film. Opt. Commun. 356, 17–20 (2015)CrossRefADSGoogle Scholar
  24. 24.
    N.K. Ibrayev, A.K. Zeinidenov, Plasmon-enhanced stimulated emission of Rhodamine 6 G in nanoporous alumina. Laser Phys. Lett. 11(11), 115805 (2014)CrossRefADSGoogle Scholar
  25. 25.
    A.K. Zeinidenov, NKh Ibrayev, A.K. Aimukhanov, The laser active element based on dye on porous alumina. Eurasian Chem. Technol. J. 16, 73–78 (2014)CrossRefGoogle Scholar
  26. 26.
    K.H.A. Lau, S. Tan, K. Tamada, M.S. Sander, W. Knoll, Highly sensitive detection of processes occurring inside nanoporous anodic alumina templates:a waveguide optical study. J. Phys. Chem. B 108, 10812–10818 (2004)CrossRefGoogle Scholar
  27. 27.
    F. Trivinho-Strixino, H.A. Guerreiro, C.S. Gomes, E.C. Pereira, F.E.G. Guimarães, Active waveguide effects from porous anodic alumina: an optical sensor proposition. Appl. Phys. Lett. 97, 011902 (2010)CrossRefADSGoogle Scholar
  28. 28.
    A.A. Lutich, S.V. Gaponenko, N.V. Gaponenko, I.S. Molchan, V.A. Sokol, V. Parkhutik, Anisotropic light scattering in nanoporous materials: a photon density of states effect. Nano Lett. 4, 1755 (2004)CrossRefADSGoogle Scholar
  29. 29.
    C.B. Ran, G.Q. Ding, W.C. Liu, Y. Deng, W.T. Hou, Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Langmuir 24, 9952–9955 (2008)CrossRefGoogle Scholar
  30. 30.
    S.K. Singh, S. Khandekar, D. Pratap, S.A. Ramakrishna, Wetting dynamics and evaporation of sessile droplets on nano-porous alumina surfaces. Colloids Surf. A Physicochem. Eng. Asp. 432, 71–81 (2013)CrossRefGoogle Scholar
  31. 31.
    A.K. Metya, S. Khan, J.K. Singh, Wetting transition of the ethanol-water droplet on smooth and textured surfaces. J. Phys. Chem. C 118, 4113–4121 (2014)CrossRefGoogle Scholar
  32. 32.
    F.P. Schafer, in “Principles of Dye Laser Operation,” Dye Lasers, ed. by F. P. Schafer (Springer, Berlin, 1977)Google Scholar
  33. 33.
    B.R. Anderson, R. Gunawidjaja, H. Eilers, Self-healing organic-dye-based random lasers. Opt. Lett. 40, 577–580 (2015)CrossRefADSGoogle Scholar
  34. 34.
    B.R. Anderson, R. Gunawidjaja, H. Eilers, Photodegradation and selfhealing in a Rhodamine 6G dye and \(Y_{2}O_{3}\) nanoparticle doped polyurethane random laser. Appl. Phys. B 120, 1–12 (2015)CrossRefGoogle Scholar
  35. 35.
    B.R. Anderson, S.T. Hung, M.G. Kuzyk, Wavelength dependence of reversible photodegradation of disperse orange 11 dye-doped PMMA thin films. J. Opt. Soc. B 32, 1043–1049 (2015)CrossRefADSGoogle Scholar
  36. 36.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  37. 37.
    G.R. Fleming, J.M. Morris, G.W. Robinson, Direct observation of rotational diffusion by picosecond spectroscopy. Chem. Phys. 17, 91–100 (1976)CrossRefADSGoogle Scholar
  38. 38.
    C. Porter, P.J. Sadkowski, C.J. Tredwell, Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy. Chem. Phys. Lett. 49, 416–420 (1977)CrossRefADSGoogle Scholar
  39. 39.
    S. Knitter, M. Kues, C. Fallnich, Emission polarization of random lasers in organic dye solutions. Opt. Lett. 37, 3621–3623 (2012)CrossRefADSGoogle Scholar
  40. 40.
    S. Knitter, M. Kues, M. Haidl, C. Fallnich, Linearly polarized emission from random lasers with anisotropically amplifying media. Opt. Express 21, 31591 (2013)CrossRefADSGoogle Scholar
  41. 41.
    P.H. Dupont, C. Couteau, D.J. Rogers, F. Hosseini Téhérani, G. Lérondel, Waveguiding-assisted random lasing in epitaxial ZnO thin film. Appl. Phys. Lett. 97, 261109 (2010)CrossRefADSGoogle Scholar
  42. 42.
    K.K. Sharma, K.D. Rao, G.R. Kumar, Nonlinear optical interactions in dye-doped solids. Opt. Quantum Electron. 26, 1–23 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations