Advertisement

Applied Physics B

, 124:129 | Cite as

Control of radiative base recombination in the quantum cascade light-emitting transistor using quantum state overlap

  • Kanuo Chen
  • Fu-Chen Hsiao
  • Brittany Joy
  • John M. Dallesasse
Article
  • 160 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

The concept of the quantum cascade light-emitting transistor (QCLET) is proposed by incorporating periodic stages of quantum wells and barriers in the completely depleted base–collector junction of a heterojunction bipolar transistor. The radiative band-to-band base recombination in the QCLET is shown to be controllable using the base–collector voltage bias for a given emitter–base biasing condition. A self-consistent Schrödinger–Poisson Equation model is built to validate the idea of the QCLET. A GaAs-based QCLET is designed and fabricated. Control of radiative band-to-band base recombination is observed and characterized. By changing the voltage across the quantum cascade region in the QCLET, the alignment of quantum states in the cascade region creates a tunable barrier for electrons that allows or suppresses emitter-injected electron flow from the p-type base through the quantum cascade region into the collector. The field-dependent electron barrier in the base–collector junction manipulates the effective minority carrier lifetime in the base and controls the radiative base recombination process. Under different quantum cascade region biasing conditions, the radiative base recombination is measured and analyzed.

Notes

Acknowledgements

Funding was provided by National Science Foundation (Grant no: ECCS 1408300).

References

  1. 1.
    M. Feng, N. Holonyak Jr., W. Hafez, Appl. Phys. Lett. 84, 151 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    M. Feng, N. Holonyak Jr., B. Chu-Kung, G. Walter, R. Chan, Appl. Phys. Lett. 84, 4792 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    M. Feng, N. Holonyak Jr., R. Chan, Appl. Phys. Lett. 84, 1952 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    G. Walter, N. Holonyak Jr., M. Feng, R. Chan, Appl. Phys. Lett. 85, 4768 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    R. Chan, M. Feng, N. Holonyak Jr., G. Walter, Appl. Phys. Lett. 86, 131114 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    G. Walter, A. James, N. Holonyak Jr., M. Feng, R. Chan, Appl. Phys. Lett. 88, 232105 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    N. Holonyak Jr., M. Feng, IEEE Spectr. 43, 50 (2006)CrossRefGoogle Scholar
  8. 8.
    F. Dixon, M. Feng, N. Holonyak Jr., Y. Huang, X.B. Zhang, J.H. Ryou, R.D. Dupuis, Appl. Phys. Lett. 93, 021111 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    M. Feng, N. Holonyak Jr., H.W. Then, C.H. Wu, G. Walter, Appl. Phys. Lett. 94, 041118 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    F. Dixon, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 96, 241103 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    H.W. Then, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 94, 013509 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    F. Tan, R. Bambery, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 101, 151118 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    F. Tan, W. Xu, X. Huang, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 102, 081103 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    P. Lam, J.M. Dallesasse, G. Walter, in Digest of Papers 2014 International Conference on Compound Semiconductor Manufacturing Technology (2014), p. 91Google Scholar
  15. 15.
    F. Tan, R. Bambery, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 99, 061105 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J. Dallesasse, M. Feng, US Patent 8,948,226, filed August 2, 2013, issued February 3, 2015Google Scholar
  17. 17.
    K. Chen, J.M. Dallesasse, in Digest of Papers 2014 International Conference on Compound Semiconductor Manufacturing Technology (2004), p. 75Google Scholar
  18. 18.
    K. Chen, F.-C. Hsiao, B. Joy, J.M. Dallesasse, Proceedings SPIE 10123 (Photonics West, Novel In-Plane Semiconductor Lasers XVI, 2017), p. 1012318Google Scholar
  19. 19.
    K. Chen, J.M. Dallesasse, in 55th Electronic Material Conference (2014)Google Scholar
  20. 20.
    R. Bambery, F. Tan, M. Feng, J.M. Dallesasss, N. Holonyak Jr., IEEE. Photon. Technol. Lett. 25, 859 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    R. Bambery, C. Wang, J.M. Dallesasse, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 104, 081117 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295, 301 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, Appl. Phys. Lett. 73, 3486 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori, Appl. Phys. Lett. 78, 3529 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    A. Kosterev, F. Tittel, IEEE. J. Quant. Electron. 38, 582 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hostetter, J. Faist, S. Blaser, Appl. Phys. B 79, 907 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    C. Charlton, B. Temelkuran, G. Dellemann, B. Mizaikoff, Appl. Phys. Lett. 86, 194102 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R. Curl, Appl. Phys. B 90, 165 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    V. Spagnolo, A. Kosterev, L. Dong, R. Lewicki, F. Tittel, Appl. Phys. B 100, 125 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    A. Lee, B. Williams, S. Kumar, Q. Hu, J. Reno, IEEE Photon. Technol. Lett. 18, 1415 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    S. Kim, F. Hatami, J. Harris, A. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, G. Harris, Appl. Phys. Lett. 88, 153903 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    B. Behnken, G. Karunasiri, D. Chamberlin, P. Robrish, J. Faist, Opt. Lett. 33, 440 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    R. Martini, C. Gmachl, J. Falciglia, F. Curti, C. Bethea, F. Capasso, E.A. Whittaker, R. Paiella, A. Tredicucci, A. Hutchinson, D.L. Sivco, A.Y. Cho, Electron. Lett. 37, 191 (2001)CrossRefGoogle Scholar
  36. 36.
    R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E.A. Whittaker, H.Y. Huang, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Electron. Lett. 38, 181 (2002)CrossRefGoogle Scholar
  37. 37.
    C. Juang, K.J. Kuhn, R.B. Darling, Phys. Rev. B 41, 12047 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    S. Datta, Superlattice Microstruct. 28, 253 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, J. Appl. Phys. 81, 7845 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    A.Y. Song, R. Bhat, P. Bouzi, C.-E. Zah, C.F. Gmachl, Phys. Rev. B 94, 165307 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    S.-C. Lee, A. Wacker, Phys. Rev. B 66, 245314 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    G. Klimeck, R. Lake, R.C. Bowen, W.R. Frensley, T.S. Moise, Appl. Phys. Lett. 67, 2539 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    A. Wacker, M. Lindskog, D.O. Winge, IEEE J. Sel. Top. Quantum Electron. 9, 1200611 (2013)Google Scholar
  44. 44.
    W.R. Frensley, Heterostructures and Quantum Devices (Academic, San Diego, 1994), p. 284Google Scholar
  45. 45.
    S. Hershfield, J.H. Davies, J.W. Wilkins, Phys. Rev. B 46, 7046 (1992)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (SIAM, Classics in Applied Mathematics, 2000), p. 183Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations