Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz

  • 266 Accesses

  • 7 Citations


We measure the wavefront distortions of a high peak power ultrashort (23 fs) laser system under high average power load. After 6 min—100 Hz operation of the laser at full average power (> 22 W after compression), the thermally induced wavefront distortions reach a steady state and the far-field profile of the laser beam no longer changes. By means of a deformable mirror located after the vacuum compressor, we apply a static pre-compensation to correct those aberrations allowing us to demonstrate a dramatic improvement of the far-field profile at 100 Hz with the reduction of the residual wavefront distortions below λ/16 before focusing. The applied technique provides 100 Hz operation of the femtosecond laser chain with stable pulse characteristics, corresponding to peak intensity above 1019 W/cm2 and average power of 19 W on target, which enables the study of relativistic optics at high repetition rate using a moderate f-number focusing optics (f/4.5).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

  • 10 February 2020

    In the original publication, we erroneously reported that the substrate of the diffraction gratings used in the experiments was made of low expansion glass (zerodur). In fact, the substrate of the diffraction gratings was made of Pyrex, which does not have the same thermomechanical properties as zerodur. This is an important correction to mention as the thermally induced wavefront distortions depend on the thermomechanical properties of the substrate.


  1. 1.

    E. Esarey, C.B. Shroeder, W.P. Leemans, “Physics of laser driven plasma based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

  2. 2.

    A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013)

  3. 3.

    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, Femtosecond X rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1–48 (2013)

  4. 4.

    H. Fattahi et al., Third generation femtosecond technology. Optica 1(1), 45–63 (2014)

  5. 5.

    W.S. Brocklesby, Progress in high average power ultrafast lasers. Eur. Phys. J. 224, 2529–2543 (2015)

  6. 6.

    F. Böhle, M. Kretschma, A. Jullien, T. Nagy, Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Las. Phys. Lett. 9, 095401 (2014)

  7. 7.

    I. Matsushima, H. Yashiro, T. Tomie, 10 KHz 40W Ti:Sapphire regenerative amplifier. Opt. Lett. 31, 2066–2068 (2006)

  8. 8.

    S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jojart, Z. Varallyay, E. Cormier, K. Osvay, A. Tünnermann, J. Limpert, Energetic sub-2-cycle laser with 216 W average power. Opt. Lett. 41(18), 4332–4335 (2016)

  9. 9.

    G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, The future is fibre accelerators. Nat. Photon. 7, 258–261 (2013)

  10. 10.

    S. Breitkopf, T. Eidam, A. Klenke, L. Von Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, J. Limpert, A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities. Light Sci. Appl., 3, e211 (2014)

  11. 11.

    M. Kienel, A. Klenke, T. Eidam, S. Haddrich, J. Limpert, A. Tünnermann, Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification. Opt. Lett. 39(4), 1049–1052 (2014)

  12. 12.

    R. Budriunas, T. Stranislauskas, J. Adamonis, A. Aleknavicius, G. Veitas, D. Gadonas, S. Balickas, A. Michailovas, A. Varanavicius, 53W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 KHz repetition rate. Opt. Exp. 25(5), 5797–5806 (2017)

  13. 13.

    A. Vaupel, N. Bodnar, B. Webb, L. Shah, M. Richardson, Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped-pulse amplification. Opt. Eng. 53(5), 051507 (2014)

  14. 14.

    P. Sikocinski, O. Novak, M. Smrz, J. Pilar, V. Jambunathan, H. Jelinkova, A. Endo, A. Lucianetti, T. Mocek, Time-resolved measurement of thermally-induced aberrations in a cryogenically cooled Yb–YAG slab with a wavefront sensor. Appl. Phys. B 73, 122 (2016)

  15. 15.

    O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, T. Mocek, Optimization of wavefront distortions and thermal-stress induced birefringence in a cryogenically-cooled multislab laser amplifier. IEEE J. Quant. Electron. 49, 11 (2013)

  16. 16.

    M. Chyla, S.S. Nagisetty, P. Severova, T. Miura, K. Mann, A. Endo, T. Mocek, Time-resolved deformation measurement of Yb:YAG thin disk using wavefront sensor. Proc. SPIE 9343, 93431E-1, (2015)

  17. 17.

    Y. Zhang, J. Wang, X. Lu, W. Huang, X. Li Research and control of thermal effect in a gas-cooled multislab Nd:glass laser amplifier. Proc. SPIE 9621, 962103-1, (2015)

  18. 18.

    C.G. Durfee, S. Backus, M.M. Murnane, H.C. Kapteyn, Design and implementation of a TW-class high average power laser system. IEEE J. Sel. Top. Quant. Electron. 4, 2 (1998)

  19. 19.

    S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, K. Torizuka, Seven terawatt Ti:sapphire laser system operating at 50 Hz with high beam quality for laser Compton femtosecond X-ray generation. Appl. Phys. B 76, 497–503 (2003)

  20. 20.

    R.S. Nagymihaly, H. Cao, D. Papp, G. Hajas, M. Kalashnikov, K. Osvay, V. Chvykov, Liquid-cooled Ti:Sapphire Thin disk amplifiers for high average power 100-TW systems. Opt. Exp. 25, 6664–6677 (2017)

  21. 21.

    W. Koechner, Solid State Laser Engineering, 6th edn. Springer, New-York (2006)

  22. 22.

    Y. Ning, Q. Sun, H. Wang, W. Wu, S. Du, X. Xu, Thermal distortion real-time detection and correction of a high-power laser beam-splitter mirror based on double Shack–Hartmann wavefront sensors. Proc. SPIE 9513, 95130Y-1, (2015)

  23. 23.

    S. Fourmaux, C. Serbanescu, L. Lecherbourg, S. Payeur, F. Martin, J.C. Kieffer, Investigation of the thermally-induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems. Opt. Exp. 17(1), 178–184 (2009)

  24. 24.

    S. Backus, R. Bartels, S. Thompson, R. Dollinger, H.C. Kapteyn, M.M. Murnane, High efficiency, single stage 7-kHz high-average-power ultrafast laser system. Opt. Lett. 26(7), 465–467 (2001)

  25. 25.

    D.A. Alessi, P.A. Rosso, H.T. Nguyen, M.D. Aasen, J.A. Britten, C. Haefner, Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast laser. Opt. Exp. 24(26), 30015–30023 (2016)

  26. 26.

    D.M. Gaudiosi, A.L. Lytle, P. Kohl, M.M. Murnane, H.C. Kapteyn, S. Backus, 11-W average power Ti:sapphire amplifier system using downchirped pulse amplification. Opt. Lett. 29(22), 2665–2667 (2004)

  27. 27.

    J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection. Opt. Commun. 148(1–3), 70–74 (1998)

  28. 28.

    G. Chériaux, P. Rousseau, F. Salin, J.P. Chambaret, B. Walker, L.F. Dimauro, Aberration-free stretcher design for ultrashort-pulse amplification. Opt. Lett. 21(6), 414–416 (1996)

  29. 29.

    F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. Opt. Lett. 25, 575–578 (2000)

  30. 30.

    T. Oksenhendler, D. Kaplan, P. Tournois, G.M. Greetham, F. Estable, Intracavity acousto-optic programmable gain control for ultra-wide-band regenerative amplifier. Appl. Phys. B 83, 491–495 (2006)

  31. 31.

    M. Pittman, S. Ferré, J.P. Rousseau, L. Notebaert, J.P. Chambaret, G. Chériaux, Design and characterization of a near diffraction-limited fs 100 TW 10 Hz high intensity laser system. Appl. Phys. B 74, 529–535 (2002). https://doi.org/10.1007/s00340-010-3916-y

  32. 32.

    T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Gabrielle, R. Herzog, O. Gobert, D. Kaplan, Self-referenced spectral interferometry. Appl. Phys. B 99, 7–12 (2010). https://doi.org/10.1007/s00340-010-3916-y

  33. 33.

    Y. Azamoum, V. Tcheremiskine, R. Clady, A. Ferré, L. Charmasson, O. Uteza, M. Sentis, Impact of the pulse contrast ratio on molybdenum Kα generation by ultrahigh intensity femtosecond laser solid interaction. Sci. Rep. 8, 4119 (2018)

  34. 34.

    S. Fourmaux, S. Payeur, S. Buffechoux, P. Lassonde, C. St-Pierre, F. Martin, J.C. Kieffer, Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system. Opt. Exp. 19(9), 8486–8497 (2011)

  35. 35.

    N.V. Didenko, A.V. Konyashchenko, A.P. Lutsenko, S.Y. Tenyakov, Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses. Opt. Exp. 16, 53178–53190 (2008)

  36. 36.

    D.N. Schimpf, E. Seise, J. Limpert, A. Tünnermann, The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems. Opt. Exp. 16(14), 10664–10674 (2008)

  37. 37.

    G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J.C. Gauthier, J.P. Geindre, T. Wittmann, Complete characterization of a plasma mirror for the production of high contrast ultraintense laser pulses. Phys. Rev. E 69, 026402 (2004)

  38. 38.

    N. Lefaudeux, E. Lavergne, S. Monchoce, X. Levecq, Diffraction limited focal spot in the interaction chamber using phase retrieval adaptive optics. Proc SPIE, 8960, 89601R (2014)

  39. 39.

    M. Born, E. Wolf, Principles of Optics, Sec. 9.2 (Pergamon, New York, 1975)

  40. 40.

    J.Y. Wang, D.E. Silva, Wave-front interpretation with Zernike polynomials. Appl. Opt. 19(9), 1510 (1980)

Download references


The research leading to these results has received funding from LASERLAB-EUROPE (grant agreement no. 654148, European Union’s Horizon 2020 research and innovation programme). The financial support of European Community, Ministry of Research and High Education, Region Provence-Alpes-Côte d’Azur, Department of Bouches-du-Rhône, City of Marseille, CNRS, and Aix-Marseille University is gratefully acknowledged for funding ASUR platform.

Author information

Correspondence to R. Clady.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clady, R., Azamoum, Y., Charmasson, L. et al. 22 W average power multiterawatt femtosecond laser chain enabling 1019 W/cm2 at 100 Hz. Appl. Phys. B 124, 89 (2018). https://doi.org/10.1007/s00340-018-6958-1

Download citation