Applied Physics B

, 124:68 | Cite as

Terahertz multiband ultrahigh index metamaterials by bilayer metallic grating structure

  • Xincui Gui
  • Xufeng Jing
  • Pengwei Zhou
  • Jianjun Liu
  • Zhi Hong
Article
  • 76 Downloads

Abstract

One-dimensional metallic grating structure was proposed to realize high refractive index metamaterial in the terahertz region. By drastically increasing the effective permittivity by means of intense capacitive coupling and reducing the diamagnetic effect using a thin metallic thickness, a peak refractive index of 15.81 at the resonant frequency in embedded metallic grating can be obtained. Multiband high refractive index metamaterial can be realized by double symmetric metallic grating and asymmetric grating structure. For asymmetric grating metamaterial structure, two separate transmission peaks appear and result in two separate high refractive index. Interestingly, a near zero refractive index metamaterial can be obtained by the introduction of double asymmetric design. It was found that our designed ultrahigh refractive index metamaterials depend on the electric field coupling effect and the magnetic field diamagnetic response.

Notes

Acknowledgements

The authors acknowledge the support from Natural Science Foundation of Zhejiang Province (LY17F050009, LQ15F050004), National Natural Science Foundation of China (NSFC) (No.61505192).

References

  1. 1.
    Y. Liang, W. Peng, M. Lu, Chu, S, Narrow-band wavelength tunable filter based on asymmetric bilayer metallic grating. Opt. Express 23(11), 14434 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    M. Choi., S.H. Lee, Y. Kim, S.B. Kang, J. Shin., M.H Kwak, A terahertz metamaterial with unnaturally high refractive index”. Nature 470(7334), 369 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    X. Wei., H. Shi., X. Dong., Y. Lu., C. Du, A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures. Appl. Phys. Lett. 97(1), 011904-011904-3 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    D.V.P. Xiao. Shumin, A.V. Kildishev, X. Ni., U.K. Chettiar, H.K. Yuan, Loss-free and active optical negative-index metamaterials. Nature, 466(7307):735 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    R. Singh, W. Singh, W. Zhang, Ultra-high terahertz index in deep subwavelength coupled bi-layer free-standing flexible metamaterials. J. Appl. Phys. 121.23:2075–329 (2017)Google Scholar
  6. 6.
    Z. Shi, R.W. Boyd, R.M. Camacho, P.K. Vudyasetu, J.C. Howell, Slow-light fourier transform interferometer. Phys. Rev. Lett., 99(24):240801 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    K. Ishihara, T. Suzuki, Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz Band. J. Infrared Millimeter Terahertz Waves, 1–10 (2017)Google Scholar
  8. 8.
    R. Liu., C. Ji., J.J. Mock., J. Chin, T.J. Cui, D.R. Smith, Broadband ground-plane cloak. Science 323(5912), 366–369 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    M. Zhong, Influence of dielectric layer on negative refractive index and transmission of metal-dielectric-metal sandwiched metamaterials. Chin. Optics Lett. 12(4), 51–53 (2014)ADSMathSciNetGoogle Scholar
  10. 10.
    F.J. Garciavidal, L. Martinmoreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Optics A Pure Appl. Optics 7(2), S97 (2005)CrossRefGoogle Scholar
  11. 11.
    A.P. Hibbins, B.R. Evans, J.R. Sambles, Experimental verification of designer surface plasmons. Science 308(5722), 670 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J.B. Pendry., D. Schurig, D.R. Smith, J.B. Pendry, D. Schurig, Smith, D. R, Controlling electromagnetic fields. Science 312, 1780–1782, Science, 312(5781), p. 1780–1782. (2006)Google Scholar
  13. 13.
    J. Shin, J.T. Shen, S. Fan, Three-dimensional meta-materials with an ultra-high effective refractive index over broad bandwidth. Phys. Rev. Lett. 102(9), 093903 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    D. Sun, M. Wang, Y. Huang, Y. Zhou, M. Qi, M. Jiang, Z. Ren, Enhanced spatial terahertz modulation based on graphene metamaterial”. Chin. Optics Lett. 15(5), 051603 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    W. Wang, F. Yan, S. Tan, H. Zhou, Y. Hou, Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators”. Photonics Res. 5(6), 571–577 (2017)CrossRefGoogle Scholar
  16. 16.
    W. Zhu, M. Jiang, H. Guan, J. Yu, H. Lu, J. Zhang, Z. Chen, Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials. Photonics Res. 5(6), 684–688 (2017)CrossRefGoogle Scholar
  17. 17.
    S.C.A. Sonsilphong, N. Wongkasem, “Meta-materials with near-zero refractive index produced using fishnet structures. J. Opt. 16.1, 100–103 (2013)Google Scholar
  18. 18.
    S.D. Mock. J.J. Justice, S.A Cummer, J.B. Pendry, A.F. Starr, Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–80 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    K. Konstantinidis, A.P. Feresidis, Broadband near-zero index metamaterials. J. Optic, 17.10:105104 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Dubois., C. Shi., X. Zhu., Y. Wang., X. Zhang, Observation of acoustic dirac-like cone and double zero refractive index. Nat. Commun., 8:14871 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    R. Vukoman, ČolovićB. Jokanović, Miloš Nenadovič, Anka Trajkovska Petkovska, Mitrić. M, & B. Jokanović, Ultra-high and near-zero refractive indices of magnetron sputtered thin-film metamaterials based on TixOy. Adv. Mater. Sci. Eng., 7–8 (2016)Google Scholar
  22. 22.
    Z. Lu, B. Campsraga, N.E. Islam, Design and Analysis of a THz metamaterial structure with high refractive index at two frequencies. Physics Research International, pp. 2090–2220 (2012)Google Scholar
  23. 23.
    G. Litmanovitch, D. Rrotshild, A. Abramovich, Flat mirror for millimeter-wave and terahertz imaging systems using an inexpensive metasurface. Chin Optics Lett 15(1), 011101 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    L. Bibbò, K. Khan, Q. Liu, M. Lin, Q. Wang, Z. Ouyang, Tunable narrowband antireflection optical filter with a metasurface. Photonics Res 5(5), 500–506 (2017)CrossRefGoogle Scholar
  25. 25.
    Z. Bai, G. Tao, Y. Li, J. He, K. Wang, G. Wang, X. Jiang, J. Wang, W. Blau, L. Zhang, Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays. Photonics Res 5(4), 280–286 (2017)CrossRefGoogle Scholar
  26. 26.
    D.R. Smith, S. Schultz, P. Marko, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev B., 65(19), 195104 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    X. Jing, W. Wang, R. Xia, J. Zhao, Y. Tian, Z. Hong, Manipulation of dual band ultrahigh index metamaterials in the terahertz region”. Appl. Opt., 55(31), 8743 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    X. Jing, X.C. Gui, R. Xia., Z. Hong, Ultrabroadband unnaturally high effective refractive index metamaterials in the terahertz regio. IEEE Photonics J. PP(99), 1–1 (2017)CrossRefGoogle Scholar
  29. 29.
    A. Darweesh. Ahmad, S.J. Bauman, J.B. Herzog, Improved optical enhancement using double-width plasmonic gratings with nanogaps. Photonics Res., 4.5:173 (2016)CrossRefGoogle Scholar
  30. 30.
    X.R. Shi., Y. Guo., R. Chen., T. Hao. L, & Chen, X, Periodic structural defects in Bragg gratings and their application in multiwavelength devices. Photonics Res., 4.2:35 (2016)Google Scholar
  31. 31.
    K. Konstantinidis, A.P. Feresidis, Broadband near-zero index metamaterials. J. Opt. 17(10), 105104 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Islam., M. Faruque, M. Islam, A near zero refractive index metamaterial for electromagnetic invisibility cloaking operation. Materials 8(8), 4790–4804 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    H. Zhou, P. Zhibin, S. Qu, S. Zhang, J. Wang, Z. Duan, H. Ma, Z. Xu, A novel high-directivity microstrip patch antenna based on zero index metamaterial. IEEE Antennas Propag. Lett. 8, 538–541 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157 403 (2006)CrossRefGoogle Scholar
  35. 35.
    R. Lui, Q. Cheng, T. Hand, J.J. Mock, T.J. Cui, S.A. Cummer, D.R. Smith, Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett. 100, 023903 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    B. Wang, K.-M. Huang, Shaping the radiation pattern with mu and epsilon—near-zero metamaterials. Progress Electromagn. Research 106, 107–119 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xincui Gui
    • 1
  • Xufeng Jing
    • 1
  • Pengwei Zhou
    • 1
  • Jianjun Liu
    • 2
  • Zhi Hong
    • 2
  1. 1.Institute of Optoelectronic TechnologyChina Jiliang UniversityHangzhouChina
  2. 2.Centre for THz ResearchChina Jiliang UniversityHangzhouChina

Personalised recommendations