Applied Physics B

, 124:67 | Cite as

Laser-triggered current gating based on photothermal effect in VO2 thin-film device using CO2 laser

  • Jihoon Kim
  • Sun Jae Jeong
  • Bong-Jun Kim
  • Yong Wook Lee
Article
  • 50 Downloads

Abstract

By incorporating a CO2 laser centered at ~ 10.6 μm, a laser-triggered current gating of up to 50 mA was demonstrated in a two-terminal planar device based on a vanadium dioxide (VO2) thin film grown by a pulsed laser deposition method. The laser-triggered current on/off gating was realized by controlling the beam power of the CO2 laser to excite the VO2 device. The transient responses of the laser-triggered currents were investigated when periodical laser pulses from the CO2 laser stimulated the VO2 device at a variety of pulse widths and repetition rates. A switching contrast between off- and on-state currents was calculated as ~ 12,195, and average rising and falling times were measured as ~ 37 and ~ 23 ms, respectively.

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2016R1D1A1B03933263).

References

  1. 1.
    J. Rabkowski, D. Peftitsis, H.-P. Nee, Silicon carbide power transistors: a new era in power electronics is initiated. IEEE Ind. Electron. Mag. 6, 17–26 (2012)CrossRefGoogle Scholar
  2. 2.
    B.J. Baliga, Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 28, 074011 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    S.L. Rumyantsev, M.E. Levinshtein, M.S. Shur, L. Cheng, A.K. Agarwal, J.W. Palmour, Optical triggering of high-voltage (18 kV-class) 4H-SiC thyristors. Semicond. Sci. Technol. 28, 125017 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    J. Hasegawa, L. Pace, L.V. Phung, M. Hatano, D. Planson, Simulation-based study about the lifetime and incident light properties dependence of the optically triggered 4H-SiC thyristors operation. IEEE Trans. Electron. Devices 64, 1203–1208 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, S. Ramanathan, Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron. Device Lett. 34, 220–222 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J. Kim, K. Park, B.-J. Kim, Y.W. Lee, Bidirectional current triggering in planar devices based on serially connected VO2 thin films using 965 nm laser diode. Opt. Express 24, 17720–17727 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    F.J. Morin, Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 3, 34–36 (1959)ADSCrossRefGoogle Scholar
  8. 8.
    E. Arcangeletti, L. Baldassarre, D. Di Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, P. Postorino, Evidence of a pressure-induced metallization process in monoclinic VO2. Phys. Rev. Lett. 98, 196406 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    A. Cavalleri, C. Tóth, C.W. Siders, J.A. Squier, F. Ráksi, P. Forget, J.C. Kieffer, Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    M. Rini, A. Cavalleri, R.W. Schoenlein, R. López, L.C. Feldman, R.F. Haglund Jr., L.A. Boatner, T.E. Haynes, Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance. Opt. Lett. 30, 558–560 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S. Han, C.H. Chun, C.S. Han, S.M. Park, Coupled physics analyses of VOx-based, three-level microbolometer. Electron. Mater. Lett. 5, 63–65 (2009)CrossRefGoogle Scholar
  12. 12.
    G. Stefanovich, A. Pergament, D. Stefanovich, Electrical switching and Mott transition in VO2. J. Phys. Condens. Matter 12, 8837–8845 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, Y.-S. Lim, Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices. New J. Phys. 6, 52 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J.S. Aitchison, J.K.S. Poon, Voltage-controlled switching and thermal effects in VO2 nano-gap junctions. Appl. Phys. Lett. 104, 221904 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Zhang, M.A. Kats, Y. Cui, Y. Zhou, Y. Yao, S. Ramanathan, F. Capasso, Current-modulated optical properties of vanadium dioxide thin films in the phase transition region. Appl. Phys. Lett. 105, 211104 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    P. Markov, R.E. Marvel, H.J. Conley, K.J. Miller, R.F. Haglund Jr., S.M. Weiss, Optically monitored electrical switching in VO2. ACS Photonics 2, 1175–1182 (2015)CrossRefGoogle Scholar
  17. 17.
    H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y.W. Lee, T. Driscoll, M.M. Qazilbash, D.N. Basov, Electrical oscillations induced by the metal-insulator transition in VO2. J. Appl. Phys. 107, 023702 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    G. Seo, B.-J. Kim, Y.W. Lee, S. Choi, J.-H. Shin, H.-T. Kim, Experimental investigation of dimension effect on electrical oscillation in planar device based on VO2 thin film. Thin Solid Films 519, 3383–3387 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    H. Coy, R. Cabrera, N. Sepúlveda, F.E. Fernandez, Optoelectronic and all-optical multiple memory states in vanadium dioxide. J. Appl. Phys. 108, 113115 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    R. Macaluso, M. Mosca, V. Costanza, A. D’Angelo, G. Lullo, F. Caruso, C. Calì, F. Di Franco, M. Santamaria, F. Di Quarto, Resistive switching behaviour in ZnO and VO2 memristors grown by pulsed laser deposition. Electron. Lett. 50, 262–263 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Kim, K. Park, S. Jo, B.-J. Kim, H.Y. Kang, S.Y. Nam, J. Oh, Y.W. Lee, Memristive states in vanadium-dioxide-based planar devices stimulated by 966 nm infrared laser pulses. Jpn. J. Appl. Phys. 54, 102601 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    C. Chen, X. Yi, J. Zhang, B. Xiong, Micromachined uncooled IR bolometer linear array using VO2 thin films. Int. J. Infrared Millim. Waves 22, 53–58 (2001)CrossRefGoogle Scholar
  23. 23.
    T. Wang, D. Torres, F.E. Fernández, A.J. Green, C. Wang, N. Sepúlveda, Increasing efficiency, speed, and responsivity of vanadium dioxide based photothermally driven actuators using single-wall carbon nanotube thin-films. ACS Nano 9, 4371–4378 (2015)CrossRefGoogle Scholar
  24. 24.
    B.K. Ridley, T.B. Watkins, The possibility of negative resistance effects in semiconductors. Proc. Phys. Soc. Lond. 78, 293–304, (1961)ADSCrossRefGoogle Scholar
  25. 25.
    Y.W. Lee, B.-J. Kim, S. Choi, H.-T. Kim, G. Kim, Photo-assisted electrical gating in a two-terminal device based on vanadium dioxide thin film. Opt. Express 15, 12108–12113 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Y.W. Lee, B.-J. Kim, S. Choi, Y.W. Lee, H.-T. Kim, Enhanced photo-assisted electrical gating in vanadium dioxide based on saturation-induced gain modulation of erbium-doped fiber amplifier. Opt. Express 17, 19605–19610 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    B.-J. Kim, G. Seo, Y.W. Lee, Bidirectional laser triggering of planar device based on vanadium dioxide thin film. Opt. Express 22, 9016–9023 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    J. Kim, S. Jo, K. Park, B.-J. Kim, Y.W. Lee, Photo-thermally induced current switching in vanadium-dioxide-based devices using CO2 laser pumping. J. Nanosci. Nanotechnol. 15, 8484–8488 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Kim, S. Jo, K. Park, H.-J. Song, H.-T. Kim, B.-J. Kim, Y.W. Lee, 20 mA bidirectional laser triggering in planar devices based on vanadium dioxide thin films using CO2 laser. Opt. Express 23, 14234–14244 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    H.S. Choi, J.S. Ahn, J.H. Jung, T.W. Noh, D.H. Kim, Mid-infrared properties of a VO2 film near the metal-insulator transition. Phys. Rev. B Condens. Matter 54, 4621–4628 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    C. Chen, Z. Zhou, Optical phonons assisted infrared absorption in VO2 based bolometer. Appl. Phys. Lett. 91, 011107 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical EngineeringPukyong National UniversityBusanSouth Korea
  2. 2.Interdisciplinary Program of Biomedical Mechanical and Electrical EngineeringPukyong National UniversityBusanSouth Korea
  3. 3.Mobrik Co. Ltd.DaejeonSouth Korea

Personalised recommendations