Applied Physics B

, 124:52 | Cite as

Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer

  • Oksana Sakhno
  • Yuri Gritsai
  • Hagen Sahm
  • Joachim Stumpe
Article
  • 115 Downloads

Abstract

Thin circular polarization gratings, characterized by high diffraction efficiency and large, up to 42°, diffraction angles were created by polarization holography for the first time. The high efficiency of the gratings is the result of the specific properties of a photo-crosslinkable liquid crystalline polymer and a two-step photochemical/thermal processing procedure. A diffraction efficiency of up to 98% at 532 nm has been achieved for gratings with periods of 700 nm. In contrast to polarization gratings with larger periods these gratings exhibit Bragg properties. So one beam is either transmitted or diffracted depending on the direction of the circular polarization of the incident light, whereas the maximal diffraction efficiency is achieved only at the proper incident angle. The fabrication procedure consists of holographic exposure of the film at room temperature which provides the photo-selective cycloaddition of cinnamic ester groups. Upon subsequent thermal annealing above Tg bulk photo-alignment of the LC polymer film occurs enhancing the optical anisotropy within the grating. The holographic patterning provides high spatial resolution, the arbitrary orientation of the LC director as well as high optical quality, thermal and chemical stability of the final gratings. Highly efficient symmetric and slanted circular polarization gratings were fabricated with the proposed technique.

Notes

Acknowledgements

The authors gratefully acknowledge the support of the ZIM Program of the Bundesministerium für Wirtschaft und Technologie (BMWi) of Germany, ZIM/KF Project 2302408UW2. The authors wish to thank to M. Paech for providing the material systhesis and to R. Rosenhauer for her contributions to the material processing procedure and for the films preparation.

References

  1. 1.
    T. Todorov, T. Tomova, L. Nikolova, Opt. Commun. 47, 123 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    L. Nikolova, T. Todorov, Opt. Acta. 31, 579–588 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    I. Shatalin, V. Kakichashvili, Sh. Kakichashvili: Sov. Tech. Phys. Lett. 13, 1051 (1987)Google Scholar
  4. 4.
    J. Tervo, T. Turunen, Opt. Lett. 25, 785 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    S. Nersisyan, N. Tabiryan, D. Steeves, B. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    R. Komanduri, C. Oh, M. Escuti, Proc. SID. 40, 487 (2009)CrossRefGoogle Scholar
  7. 7.
    E. Nicolescu, M. Escuti, Proc. SPIE. 7050, 1 (2008)Google Scholar
  8. 8.
    E. Nicolescu, M. Escuti, Proc. SPIE. 6661, 666105 (2007)CrossRefGoogle Scholar
  9. 9.
    B. Kress, T. Starner,: Proc. SPIE 8720. 87200A-13 (2012)Google Scholar
  10. 10.
    C. Oh, M. Escuti, Phys. Rev. A. 76, 043815 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    G.P. Crawford, J.N. Eakin, M.D. Radcliffe, A. Callan-Jones, R. Pelcovits, J. Appl. Phys. 98, 123102 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    L. Nikolova, P.S. Ramanujam, Polarization holography. (Cambridge University Press, UK, 2009)CrossRefGoogle Scholar
  13. 13.
    E. Collett, (Polarized Light: Fundamentals and Applications (Dekker, New York, 1993)Google Scholar
  14. 14.
    C. Oh, M. Escuti, Opt. Lett. 33, 2287 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    R. Komanduri, C. Oh, M. Escuti, Phys. Rew. E. 76, 0217011 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, D. Broer, Proc. SPIE. 6302, 630207 (2006)CrossRefGoogle Scholar
  17. 17.
    D. Yi. Weng, Yu Xu, X. Zhang, Lim, Sh. Wu: Opt. Express. 24, 17746 (2016)ADSGoogle Scholar
  18. 18.
    H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, T. Hasegawa, J. Appl. Phys. 94, 1298 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    H. Ono, N. Kawatsuki, AZojomo. 1, 1 (2005)Google Scholar
  20. 20.
    A. Emoto, T. Matsumoto, A. Yamashita, T. Shioda, H. Ono, N. Kawatsuki, J. Appl. Phys. 106, 073505 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    R. Rosenhauer, Th Fischer, C. Czapla, J. Stumpe, A. Viñuales, M. Pinol, J. Serrano: Mol. Cryst. Liq. Cryst. 364, 295 (2001)Google Scholar
  22. 22.
    R. Rosenhauer, J. Stumpe, R. Giménez, M. Piñol, J. Serrano, A. Viñuales, D. Broer: Macromolecules. 44, 1438 (2011)ADSGoogle Scholar
  23. 23.
    W.R. Klein, B.D. Cook, IEEE Trans. Sonics Ultrason. 14, 123 (1967)CrossRefGoogle Scholar
  24. 24.
    H. Kogelnik, Bell Syst. Tech. J. 488, 2909 (1969)Google Scholar
  25. 25.
    M.G. Moharam, L. Yong, L: Appl. Opt. 17, 1757 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    M. Ishiguro, D. Sato, A. Shishido, T. Ikeda: Langmuir. 23, 332 (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Oksana Sakhno
    • 1
  • Yuri Gritsai
    • 2
    • 3
  • Hagen Sahm
    • 2
  • Joachim Stumpe
    • 1
    • 3
  1. 1.Fraunhofer Institute for Applied Polymer ResearchPotsdam-GolmGermany
  2. 2.SeeReal Technologies GmbHDresdenGermany
  3. 3.Institute for Thin Film Technology and MicrosensoricTeltowGermany

Personalised recommendations