Applied Physics B

, 124:35 | Cite as

Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter

  • Zhuangqi Zhou
  • Xiangru Wang
  • Rusheng Zhuo
  • Xiaoxian He
  • Liang Wu
  • Xiaolin Wang
  • Qinggui Tan
  • Qi Qiu
Article
  • 84 Downloads

Abstract

To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (NSFC) (nos. 61405029, 91438108, 61775026).

References

  1. 1.
    S. Jalilifiroozinezhad, M.H. Ghanian, M.K. Ashtiani et al., Polycaprolactone-templated reduced-graphene oxide liquid crystal nanofibers towards biomedical applications [J]. Rsc Adv. 7(63), 39628–39634 (2017)CrossRefGoogle Scholar
  2. 2.
    C.Y. Wang, C.Y. Hsieh, H.Y. Chen et al., Full-field optical coherence tomography using nematic liquid-crystal phase shifter [J]. Appl Opt. 51(9), 1361–1366 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Dai, H.L. Peng, Y.P. Zhang et al., A beam-steering array using liquid crystal phase shifter[C]// IEEE Mtt-S International Microwave Workshop Series on Advanced Materials and Processes for Rf and Thz Applications. IEEE., 1–3 (2016)Google Scholar
  4. 4.
    F. Goelden, A. Gaebler, M. Goebel et al., Tunable liquid crystal phase shifter for microwave frequencies [J]. Electron. Lett. 45(13), 686–687 (2009)CrossRefGoogle Scholar
  5. 5.
    P.F. Mcmanamon, P.J. Bos, M.J. Escuti et al., A review of phased array steering for narrow-band electrooptical systems [J]. Proc. IEEE 97(6), 1078–1096 (2009)Google Scholar
  6. 6.
    W.J. Miniscalco, S.A. Lane, Optical space–time division multiple access [J]. J. Lightwave Technol. 30(11), 1771–1785 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    X. He, X. Wang, L. Wu et al., Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering [J]. Optics Commun. 382, 437–443 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    D. Gu, M. Mahajan, D. Guthals, High power liquid crystal spatial light modulators [J]. Proc Spie. 6306(22), 630602 (2006)CrossRefGoogle Scholar
  9. 9.
    Y. Wu, W. Hu, Q. Tong et al., Graphene-based liquid-crystal microlens arrays for synthetic-aperture imaging [J]. J. Opt. 19(9), 095102 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    H.I. Shin, K.H. Kim, T.W. Kim et al., Fiber laser annealing of brush-painted ITO nanoparticles for use as transparent anode for organic solar cells [J]. Ceram. Int. 42(12), 13983–13989 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Ding, Y. Zhu, C. Branford-White et al., Self-assembled transparent conductive composite films of carboxylated multi-walled carbon nanotubes/poly(vinyl alcohol) electrospun nanofiber mats [J]. Mater. Lett. 128(10), 310–313 (2014)CrossRefGoogle Scholar
  12. 12.
    F. Wang, L. Shao, Q. Bai et al., Photo-induced vertical alignment of liquid crystals via in situ polymerization initiated by polyimide containing benzophenone [J]. Polymers. 9(6), 233 (2017)CrossRefGoogle Scholar
  13. 13.
    V.I. Brinzari, A.I. Cocemasov, D.L. Nika et al., Ultra-low thermal conductivity of nanogranular indium tin oxide films deposited by spray pyrolysis [J]. Appl. Phys. Lett., 110(7), (2017)Google Scholar
  14. 14.
    F. Meng, F. Huang, Y. Guo et al., In situ, intercalation polymerization approach to polyamide-6/graphite nanoflakes for enhanced thermal conductivity [J]. Compos. B Eng. 117, 165–173 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Piasecka, K. Strąk, B. Maciejewska, Calculations of flow boiling heat transfer in a minichannel based on liquid crystal and infrared thermography data [J]. Heat Transfer Eng., 38(3), (2017)Google Scholar
  16. 16.
    Z. Zhang, Z. You, D. Chu, Fundamentals of phase-only liquid crystal on silicon (LCOS) devices [J]. Light Sci. Appl. 3(10), e213 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Li, S. Gauzia, S.T. Wu, High temperature-gradient refractive index liquid crystals [J]. Opt. Express. 12(9), 2002–2010 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    M. Pons, E. Blanquet, J.M. Dedulle et al., Thermodynamic heat transfer and mass transport modeling of the sublimation growth of silicon carbide crystals [J]. J. Electrochem. Soc. 143(11), 3727–3735 (1996)CrossRefGoogle Scholar
  19. 19.
    G. Chen, J. Bi, A semi-analytical solution for 2-D axisymmetric modeling of repetitive pulse laser heating with body absorption [J]. Int. J. Heat Mass Transfer. 111, 367–373 (2017)CrossRefGoogle Scholar
  20. 20.
    O.B. Kovalev, A.V. Zaitsev, D. Novichenko et al., Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process [J]. J. Therm. Spray Technol. 20(3), 465–478 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Cao, Q. Mu, L. Hu et al., The durability of a liquid crystal modulator for use with a high power laser [J]. J. Opt. A: Pure Appl. Opt. 9(4), 427 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    S.T. Wu, Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared [J]. J. Appl. Phys. 84(8), 4462–4465 (1998)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    N. Wang, X.X. Li, The electrically controlled birefringence measurement influence of liquid crystal caused by absorption effect in infrared region[C]//Advanced Materials Research. Trans Tech Publ. 875, 467–471 (2014)Google Scholar
  24. 24.
    Z. Tang, X. Wang, Z. Huang et al., Sub-aperture coherence method to realize ultra-high resolution laser beam deflection [J]. Optics Commun. 335, 1–6 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J. Li, S. Gauza, S.T. Wu, Temperature effect on liquid crystal refractive indice s[J]. J. Appl. Phys. 96(1), 19–24 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    J. Li, S.T. Wu, Self-consistency of Vuks equations for liquid-crystal refractive indices [J]. J. Appl. Phys. 96(11), 6253–6258 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    D.K. Yang, S.T. Wu, Fundamentals of liquid crystal devices[M]. Wiley (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.College of Optoelectronic Science and EngineeringNational University of Defense TechnologyChangshaChina
  4. 4.National Key Laboratory of Science and Technology on Space MicrowaveXi’anChina

Personalised recommendations