Advertisement

Applied Physics B

, 122:273 | Cite as

Sub-picosecond ultra-low frequency passively mode-locked fiber laser

  • Christian Cuadrado-LabordeEmail author
  • José L. Cruz
  • Antonio Díez
  • Miguel V. Andrés
Article

Abstract

We developed a nonlinear polarization rotation all-fiber mode-locked erbium-doped fiber laser, with the purpose to reach a sub-picosecond and sub-megahertz light pulse emission. In the process, we observed three different emission regimes as the net birefringence is changed, namely high-power dissipative soliton resonance, low-power soliton regime, and a mixed combination of both. In the pure solitonic regime, a 0.961 MHz train of chirp-free Gaussian pulses was obtained, with a time width of 0.919 ps at 1564.3 nm.

Keywords

Pump Power Fiber Laser Light Pulse Wavelength Division Multiplexer Polarization Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Funding

The authors acknowledge financial support from the Ministerio de Economia y Competitividad of Spain and the Fondo Europeo de Desarrollo Regional (FEDER)—Project TEC2013-46643-C2-1-R—and the Generalitat Valenciana—Project PROMETEOII/2014/072. The work of C. Cuadrado-Laborde has been partially supported by CONICET and ANPCyT (Projects PIP112-2015-0100607-CO and PICT-2015-2818, respectively), Argentina.

Supplementary material

Supplementary material 1 (AVI 1342 kb)

References

  1. 1.
    T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, G. Mourou, Corneal refractive surgery with femtosecond lasers. IEEE J. Sel. Top. Quant. 5(4), 902–910 (1999)CrossRefGoogle Scholar
  2. 2.
    A. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett. 82(19), 3883–3886 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    S. Kobtsev, S. Kukarin, Y. Fedotov, Ultra-low repetition rate mode-locked fiber laser with high-energy pulses. Opt. Expr. 16(26), 21936–21941 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    A. Ivanenko, S. Kobtsev, S. Smirnov, A. Kemmer, Mode-locked long fibre master oscillator with intra-cavity power management and pulse energy >12 μJ. Opt. Expr. 24(6), 6650–6655 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    B. Nyushkov, V. Denisov, S. Kobtsev, V. Pivtsov, N. Kolyada, A. Ivanenko, S. Turitsyn, Generation of 1.7-μJ pulses at 1.55 μm by a self-mode locked all-fiber laser with a kilometers-long linear-ring cavity. Laser Phys. Lett. 7(9), 661–665 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S. Smirnov, S. Kobtsev, S. Kukarin, A. Ivanenko, Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation. Opt. Expr. 20(24), 27447–27453 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S. Kobtsev, S. Smirnov, S. Kukarin, S. Turitsyn, Mode-locked fiber lasers with significant variability of generation regimes. Opt. Fiber Technol. 20(6), 615–620 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    D. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. Smirnov, S. Kobtsev, S. Turitsyn, Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers. Nature Commun. 6, 7004 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    N. Akhmediev, J.M. Soto-Crespo, P. Grelu, Roadmap to ultra-short record high-energy pulses out of laser oscillators. Phys. Lett. A 372, 3124–3128 (2008)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    X. Liu, Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system. Phys. Rev. A 81(5), 053819 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    X. Wu, D.Y. Tang, H. Zhang, L.M. Zhao, Dissipative soliton resonance in an all-normal dispersion erbium-doped fiber laser. Opt. Expr. 17(7), 5580–5584 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    X. Liu, Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion. Opt. Expr. 19(7), 5874–5887 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    C. Jiong, J. Dong-Fang, W. Yong-Chao, W. Chang-Le, W. Zhao-Ying, Y. Tian-Xin, Passively mode-locked fiber laser with a sub-megahertz repetition rate. Chin. Phys. Lett. 28(11), 114203 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, H. Ming, Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser. Opt. Lett. 37(8), 1334–1336 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    S. Kobtsev, S. Smirnov, Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length. Laser Phys. 21(2), 272–276 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    F. Amrani, M. Salhi, P. Grelu, H. Leblond, F. Sanchez, Universal soliton pattern formations in passively mode-locked fiber lasers. Opt. Lett. 36(9), 1545–1547 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    G.P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, San Diego, 2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christian Cuadrado-Laborde
    • 1
    • 2
    • 3
    Email author
  • José L. Cruz
    • 1
  • Antonio Díez
    • 1
  • Miguel V. Andrés
    • 1
  1. 1.Departamento de Física Aplicada y ElectromagnetismoICMUV, Universidad de ValenciaBurjassotSpain
  2. 2.Instituto de Física Rosario (CONICET-UNR)RosarioArgentina
  3. 3.Facultad de Química e IngenieríaPontificia Universidad Católica ArgentinaRosarioArgentina

Personalised recommendations