Applied Physics B

, Volume 119, Issue 2, pp 305–311 | Cite as

Properties of surface plasmon polaritons excited by generalized cylindrical vector beams

  • Zhongsheng Man
  • Wei Shi
  • Yuquan Zhang
  • Chonglei Zhang
  • Changjun Min
  • X.-C. YuanEmail author


Properties of surface plasmon polaritons (SPPs) excited by generalized cylindrical vector (CV) beams in high-numerical-aperture microscopic system are investigated both theoretically and experimentally. The CV beams can be decomposed into radial and azimuthal polarization components with different weights, and only the radial polarization component is able to excite SPPs in our system; thus, the total field on the metal film contributed by both the excited SPPs and directly transmitted fields is completely determined by the ratio between radial and azimuthal components of the incident CV beam. A variety of total field distributions such as virtual probe, flat-topped pattern, and doughnut can dynamically be obtained through simply selecting the desired CV beams.


Surface Plasmon Polaritons Deviation Angle Electric Field Distribution Total Field Silver Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the National Natural Science Foundation of China under Grant Nos. (61036013, 61138003, 11204141, and 61377052), Tianjin Municipal Science and Technology Commission under Grant No. 11JCZDJC15200, and Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031120034.

Supplementary material

Supplementary material 1 (AVI 254 kb)


  1. 1.
    G.M. Lerman, A. Yanai, U. Levy, Nano Lett. 9, 2139 (2009)CrossRefADSGoogle Scholar
  2. 2.
    W. Chen, D.C. Abeysinghe, R.L. Nelson, Q. Zhan, Nano Lett. 9, 4320 (2009)CrossRefADSGoogle Scholar
  3. 3.
    F.I. Baida, A. Belkhir, Plasmonics 4, 51 (2009)CrossRefGoogle Scholar
  4. 4.
    H. Kano, S. Mizuguchi, S. Kawata, J. Opt. Soc. Am. B 15, 1381 (1998)CrossRefADSGoogle Scholar
  5. 5.
    L. Du, D.Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S.A. Maier, X. Yuan, Sci. Rep. 3, 3064 (2013)ADSGoogle Scholar
  6. 6.
    Q. Zhan, Opt. Lett. 31, 1726 (2006)CrossRefADSGoogle Scholar
  7. 7.
    W. Chen, Q. Zhan, Opt. Lett. 34, 722 (2009)CrossRefADSGoogle Scholar
  8. 8.
    Z. Man, L. Du, C. Min, Y. Zhang, C. Zhang, S. Zhu, H. Paul Urbach, X.C. Yuan, Appl. Phys. Lett. 105, 011110 (2014)CrossRefADSGoogle Scholar
  9. 9.
    K.J. Moh, X.-C. Yuan, J. Bu, S.W. Zhu, B.Z. Gao, Opt. Lett. 34, 971 (2009)CrossRefADSGoogle Scholar
  10. 10.
    C. Zhang, R. Wang, C. Min, S. Zhu, X.-C. Yuan, Appl. Phys. Lett. 102, 011114 (2013)CrossRefADSGoogle Scholar
  11. 11.
    C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, X. Yuan, Nat. Commun. 4, 2891 (2013)ADSGoogle Scholar
  12. 12.
    K.J. Moh, X.-C. Yuan, J. Bu, R.E. Burge, B.Z. Gao, Appl. Opt. 46, 7544 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Q. Zhan, Adv. Opt. Photon. 1, 1 (2009)CrossRefGoogle Scholar
  14. 14.
    B. Richards, E. Wolf, Proc. R. Soc. Lond. A 253, 358 (1959)CrossRefADSzbMATHGoogle Scholar
  15. 15.
    K.S. Youngworth, T.G. Brown, Opt. Express 7, 77 (2000)CrossRefADSGoogle Scholar
  16. 16.
    Q. Zhan, J.R. Leger, Opt. Express 10, 324 (2002)CrossRefADSGoogle Scholar
  17. 17.
    K. Huang, P. Shi, G.W. Cao, K. Li, X.B. Zhang, Y.P. Li, Opt. Lett. 36, 888 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhongsheng Man
    • 1
  • Wei Shi
    • 1
  • Yuquan Zhang
    • 1
  • Chonglei Zhang
    • 2
  • Changjun Min
    • 2
  • X.-C. Yuan
    • 2
    Email author
  1. 1.Institute of Modern OpticsNankai UniversityTianjinChina
  2. 2.Institute of Micro and Nano Optics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations