Advertisement

Applied Physics B

, Volume 118, Issue 1, pp 159–166 | Cite as

Real-time contour fringes obtained with a variable synthetic wavelength from a single diode laser

  • Danilo Mariano da SilvaEmail author
  • Eduardo Acedo Barbosa
  • George Cunha Cardoso
  • Niklaus Ursus Wetter
Article

Abstract

In this work, we present a method to generate digital speckle contour fringes by tuning a red diode laser with a single external cavity. In the cavity, light is reflected by a diffraction grating and re-injected into the emitter. A proper alignment of the cavity provides dual emission of the laser, thus generating a synthetic wavelength λ S. The resulting image of the studied object appears covered with the usual high spatial frequency speckle pattern modulated by a low-frequency interferogram of contour interval λ S/2 which describes the object surface shape. Changes in the separation between the two laser emissions correspond to an extended range of synthetic wavelengths ranging from tens of micrometers to some millimeters. In the experimental section we demonstrate the potential of this technique by changing the contour interval of the interferogram according to the object’s shape and to the desired measurement precision. An analytical expression relating the interferogram intensity with the Fourier transform of the laser output intensity was obtained, and possible applications of this result for wavefront shaping are discussed.

Keywords

Diode Laser Electronic Speckle Pattern Interferometry Fringe Visibility External Cavity Diode Laser Digital Speckle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Supplementary material 1 (AVI 4903 kb)

References

  1. 1.
    P.J. de Groot, Appl. Opt. 33, 5948 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Wyant, Appl. Opt. 23, 4539 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    K. Creath, Appl. Opt. 26, 2810 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    A.T. Forrester, W.E. Parkins, E. Gerjuoy, Phys. Rev. 72, 728 (1947)ADSCrossRefGoogle Scholar
  5. 5.
    K.A. Hildebrand, B. P. and Haines. Phys. Lett. 21, 422 (1966)ADSCrossRefGoogle Scholar
  6. 6.
    N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, K. Matsuda, Jpn. J. Appl. Phys. 7, 904 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, P. Laporta, Opt. Express 15, 14591 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    T. Maack, G. Notni, W. Schreiber, Opt. Commun. 115, 576 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    A. Wada, M. Kato, Y. Ishii, Appl. Opt. 47, 2053 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Zou, H. Diao, X. Peng, H. Tiziani, Appl. Opt. 31, 6616 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    C. Wagner, W. Osten, S. Seebacher, Opt. Eng. 39, 79 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    K. Alzahrani, D. Burton, F. Lilley, M. Gdeisat, F. Bezombes, M. Qudeisat, Opt. Express 20, 5658 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A.F. Fercher, H.Z. Hu, U. Vry, Appl. Opt. 24, 2181 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    D.M. Silva, E.A. Barbosa, N.U. Wetter, Rev. Sci. Instrum. 83, 103103 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    E.A. Barbosa, D.M. Silva, C.E. Nascimento, F.L. Galvão, J.C.R. Mittani, Opt. Lasers Eng. 51, 898 (2013)CrossRefGoogle Scholar
  16. 16.
    N.U. Wetter, Appl. Phys. B 86, 515 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    M. Fleming, A. Mooradian, IEEE J. Quantum Electron. 17, 44 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    E. Hack, B. Frei, R. Ka, U. Sennhauser, Appl. Opt. 37, 2591 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M.G. Littman, H.J. Metcalf, Appl. Opt. 17, 2224 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    W.E.J. Lamb Jr, Phys. Rev. 134, A1429–A1450 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    E.A. Barbosa, Appl. Phys. B 80, 345 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    E.A. Barbosa, A.C.L. Lino, Appl. Opt. 46, 2624 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Barbosa, Opt. Express 18, 8743 (2010)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Danilo Mariano da Silva
    • 1
    Email author
  • Eduardo Acedo Barbosa
    • 2
  • George Cunha Cardoso
    • 3
  • Niklaus Ursus Wetter
    • 1
  1. 1.Centro de Lasers e AplicaçõesInstituto de Pesquisas Energéticas e Nucleares (CNEN-IPEN/SP)São PauloBrazil
  2. 2.Laboratório de Óptica AplicadaFaculdade de Tecnologia de São PauloSão PauloBrazil
  3. 3.Physics DepartmentHaverford CollegeHaverfordUSA

Personalised recommendations