Applied Physics B

, Volume 110, Issue 2, pp 241–248 | Cite as

Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test

  • C. J. Smith
  • S. So
  • L. Xia
  • S. Pitz
  • K. Szlavecz
  • D. Carlson
  • A. Terzis
  • G. Wysocki


We developed a low-power, portable, wireless laser spectroscopic sensor for atmospheric CO2 monitoring. The sensor is based on tunable diode laser absorption spectroscopy with a 2-μm wavelength VCSEL as a source and wavelength modulation technique for spectroscopic signal detection. The sensor allows measurement of CO2 concentration changes with a 1σ sensitivity of 0.14 ppmv Hz−1/2. This sensor was both laboratory and field tested under varying environmental conditions. It was used to measure a soil respiration rate of topsoil in the lab and of forest floors in the field. Measurement results are compared with those of commercial non-dispersive infrared sensors and very good agreement is found.


Sensor Node Soil Respiration Soil Respiration Rate Tunable Diode Laser Absorption Spectroscopy Vertical Cavity Surface Emit Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was sponsored in part by the National Science Foundation’s MIRTHE Engineering Research Center, an NSF MRI Award #0723190 for the openPHOTONS systems, an Innovation Award from The Keller Center for Innovation in Engineering Education, NSF IDBR Award #0754782 for purchase of the Vaisala sensors, and the NSF Training Program No. 0903661 “Nanotechnology for Clean Energy IGERT.”


  1. 1.
    A.L. Dunn, S.C. Wofsy, A.H. Bright, Ecol. Appl. 19, 495 (2009) CrossRefGoogle Scholar
  2. 2.
    D. Fowler, K. Pilegaard, M.A. Sutton, P. Ambus, M. Raivonen, J. Duyzer, D. Simpson, H. Fagerli, S. Fuzzi, J.K. Schjoerring, C. Granier, A. Neftel, I.S.A. Isaksen, P. Laj, M. Maione, P.S. Monks, J. Burkhardt, U. Daemmgen, J. Neirynck, E. Personne, R. Wichink-Kruit, K. Butterbach-Bahl, C. Flechard, J.P. Tuovinen, M. Coyle, G. Gerosa, B. Loubet, N. Altimir, L. Gruenhage, C. Ammann, S. Cieslik, E. Paoletti, T.N. Mikkelsen, H. Ro-Poulsen, P. Cellier, J.N. Cape, L. Horváth, F. Loreto, Ü. Niinemets, P.I. Palmer, J. Rinne, P. Misztal, E. Nemitz, D. Nilsson, S. Pryor, M.W. Gallagher, T. Vesala, U. Skiba, N. Brüggemann, S. Zechmeister-Boltenstern, J. Williams, C. O’Dowd, M.C. Facchini, G. de Leeuw, A. Flossman, N. Chaumerliac, J.W. Erisman, Atmos. Environ. 43, 5193 (2009) CrossRefGoogle Scholar
  3. 3.
    C.D. Jones, P. Cox, C. Huntingford, Tellus B 55, 642 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    J.F.J. Korhonen, J. Pumpanen, P. Kolari, E. Juurola, E. Nikinmaa, Biogeosci. Discuss. 6, 6179 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    J. Pumpanen, H. Ilvesniemi, L. Kulmala, E. Siivola, H. Laakso, P. Kolari, C. Helenelund, M. Laakso, M. Uusimaa, P. Hari, Soil Sci. Soc. Am. J. 72, 1187 (2008) CrossRefGoogle Scholar
  6. 6.
    J.W. Raich, W.H. Schlesinger, Tellus B 44, 81 (1992) ADSCrossRefGoogle Scholar
  7. 7.
    W.H. Schlesinger, J.A. Andrews, Biogeochemistry 48, 7 (2000) CrossRefGoogle Scholar
  8. 8.
    K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, C. Csuzdi, Biol. Invasions 13, 1165 (2011) CrossRefGoogle Scholar
  9. 9.
    J. Tang, L. Misson, A. Gershenson, W. Cheng, A.H. Goldstein, Agric. For. Meteorol. 132, 212 (2005) CrossRefGoogle Scholar
  10. 10.
    R. Vargas, M.F. Allen, New Phytol. 179, 460 (2008) CrossRefGoogle Scholar
  11. 11.
    S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, Proc. SPIE 7808, 780818 (2010). doi: 10.1117/12.861505 CrossRefGoogle Scholar
  12. 12.
    S. So, A.A. Sani, L. Zhong, F. Tittel, G. Wysocki, in The 8th ACM/IEEE International Conference on Information Processing in Sensor Networks (ACM, San Francisco, 2009) Google Scholar
  13. 13.
    S. So, A.A. Sani, Z. Lin, F. Tittel, G. Wysocki, in International Conference on Information Processing in Sensor Networks (IPSN 2009) (2009), pp. 427–428 Google Scholar
  14. 14.
    T. Antoine-Santoni, J.F. Santucci, E. de Gentili, X. Silvani, F. Morandini, Sensors 9, 5878 (2009) CrossRefGoogle Scholar
  15. 15.
    C. Bernardo, D.F. de Vries, Int. J. Greenh. Gas Control 5(3), 565–570 (2012) CrossRefGoogle Scholar
  16. 16.
    J. Franzaring, P. Högy, A. Fangmeier, Agric. Ecosyst. Environ. 128, 127 (2008) CrossRefGoogle Scholar
  17. 17.
    P. Kluczynski, J. Gustafsson, Å.M. Lindberg, O. Axner, Spectrochim. Acta, Part B, At. Spectrosc. 56, 1277 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    J. Reid, D. Labrie, Appl. Phys. B, Lasers Opt. 26, 203 (1981) ADSCrossRefGoogle Scholar
  19. 19.
    S.G. So, A.A. Sani, F.K. Tittel, G. Wysocki, in The Conference on Lasers and Electro-Optics (CLEO 2009), Baltimore, MD, USA (2009) Google Scholar
  20. 20.
    P. Werle, R. Mücke, F. Slemr, Appl. Phys. B, Lasers Opt. 57, 131 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    J.B. McManus, D.D. Nelson, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Appl. Phys. B 85, 235 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    D. Richter, A. Fried, P. Weibring, Laser Photonics Rev. 3, 343 (2009) CrossRefGoogle Scholar
  23. 23.

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • C. J. Smith
    • 1
  • S. So
    • 1
    • 2
  • L. Xia
    • 3
  • S. Pitz
    • 3
  • K. Szlavecz
    • 3
  • D. Carlson
    • 4
  • A. Terzis
    • 4
  • G. Wysocki
    • 1
  1. 1.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Sentinel Photonics Inc.Monmouth JunctionUSA
  3. 3.Department of Earth and Planetary SciencesThe Johns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Computer ScienceThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations