Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evolution of Er3+/Yb3+-codoped NaGdF4 nanorods at room temperature for non-contact nanothermometer and optical heater

Abstract

The homogenous Er3+/Yb3+-codoped NaGdF4 nanorods were prepared through an ingenious reaction technology at room temperature. The influence of synthetic time on the phase category and microstructure of the studied compounds was examined in detail. When the reaction time was 3 h, the Er3+/Yb3+-codoped NaGdF4 nanorods with single hexagonal phase were obtained. Upon 980 nm light excitation, visible upconversion emissions were detected in the synthesized nanorods and the involved luminescent mechanism pertained to be a two-photon absorption process. Based on the 2H11/2 and 4S3/2 thermally coupled levels, the optical thermometric behaviors of the resultant nanorods were discussed via fluorescence intensity ratio technology and the maximum sensor sensitivity was about 0.0021 K−1 at 491 K. Moreover, we also dealt with the laser-induced optical heating properties of the Er3+/Yb3+-codoped NaGdF4 nanorods and the temperature of the final product was boosted to 348 K when the excitation pump power was 260 mW. These achievements imply that the bifunctional Er3+/Yb3+-codoped NaGdF4 nanorods are a promising candidate for simultaneous nanothermometer and optical heater.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    H. Suo, C. Guo, Z. Yang, S. Zhou, C. Duan, M. Yin, J. Mater. Chem. C 3, 7379 (2015)

  2. 2.

    X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, X. Yan, RSC Adv. 5, 86219 (2015)

  3. 3.

    H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, C. Guo, Nanoscale 10, 9245 (2018)

  4. 4.

    P. Du, Y. Hua, J.S. Yu, Chem. Eng. J. 352, 352 (2018)

  5. 5.

    P. Du, Q. Zhang, X. Wang, L. Luo, W. Li, J. Alloys Compd. 805, 171 (2019)

  6. 6.

    A. Kobylinska, K. Kniec, K. Maciejewska, L. Marciniak, New J. Chem. 43, 6080 (2019)

  7. 7.

    X. Li, L. Yang, Y. Zhu, J. Zhong, D. Chen, RSC Adv. 9, 7948 (2019)

  8. 8.

    F. Chi, X. Wei, S. Zhou, Y. Chen, C. Duan, M. Yin, Inorg. Chem. Front. 5, 1288 (2018)

  9. 9.

    P. Li, Z. Sun, R. Shi, G. Liu, Z. Fu, Y. Wei, Appl. Phys. Lett. 111, 241905 (2017)

  10. 10.

    J. Cao, F. Hu, L. Chen, H. Guo, C. Duan, M. Yin, J. Alloys Compd. 693, 326 (2017)

  11. 11.

    X. Wang, Y. Wang, L. Jin, Y. Bu, X.L. Yang, X. Yan, J. Alloys Compd. 773, 393 (2019)

  12. 12.

    B. Xu, J. Liu, K. Zou, Appl. Phys. A 125, 100 (2019)

  13. 13.

    F. Huang, T. Yang, S. Wang, L. Jin, T. Hu, D. Chen, J. Mater. Chem. C 6, 12364 (2018)

  14. 14.

    Q. Zuo, L. Luo, Y. Yao, J. Alloys Compd. 632, 711 (2015)

  15. 15.

    Y. Zhang, X. Cai, J. Li, X. Wang, Y. Li, X. Yao, J. Alloys Compd. 735, 473 (2018)

  16. 16.

    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, R. Szymczak, M. Baran, J. Phys. Chem. Sol. 67, 675 (2006)

  17. 17.

    S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Phys. Solid State 50, 886 (2008)

  18. 18.

    I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, H. Szymczak, J. Magn. Magn. Mater. 208, 217 (2000)

  19. 19.

    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.A. Khomchenko, N.V. Pushkarev, I.O. Tyoyanchuk, A. Maignan, D. Flahaut, H. Szymczak, R. Szymczak, Eur. Phys. J. B 42, 51 (2004)

  20. 20.

    V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Crystallogr. Rep. 60, 629 (2015)

  21. 21.

    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 393 (2018)

  22. 22.

    W. Qi, Q. Wu, J.G. Shapter, M. Duan, S. Yang, G. Gao, ACS Omega 3, 18730 (2018)

  23. 23.

    P. Ramasamy, P. Chandra, S.W. Rhee, Nanoscale 5, 8711 (2013)

  24. 24.

    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, M. Salem, Chin. Phys. B 25, 016102 (2016)

  25. 25.

    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Y. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloys Compd. 754, 247 (2018)

  26. 26.

    M. Banski, A. Podhorodecki, J. Misiewicz, M. Afzaal, A.L. Abdelhady, P. Brien, J. Mater. Chem. C 1, 801 (2013)

  27. 27.

    A. Kumar, S.P. Tiwari, K. Kumar, J.C.G.E. Silva, Mater. Res. Express 6, 106201 (2019)

  28. 28.

    P. Padhye, S. Sadhu, M. Malik, P. Poddar, RSC Adv. 6, 53504 (2016)

  29. 29.

    H. Guan, G. Liu, J. Wang, X. Dong, W. Yu, Dalton Trans. 43, 10801 (2014)

  30. 30.

    Y. Xi, Z. Chang, X. Ye, H. Huang, Y. Huang, Q. Xiao, H. Lin, Nanoscale 8, 1288 (2016)

  31. 31.

    M.A. Almessiere, Y. Slimani, Güngüne H¸ Bayka A. Trukhanov SV, Trukhanov AV, Nanomaterials 9, 24 (2019)

  32. 32.

    M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials. 9, 202 (2019)

  33. 33.

    P. Du, J.S. Yu, Microchim. Acta 185, 237 (2018)

  34. 34.

    W. Sawodny, K. Niedenzu, J.W. Dawson, Spectrochim. Acta 23, 799 (1967)

  35. 35.

    P. Ramasamy, P. Chandra, S.W. Rhee, J. Kim, Nanoscale 5, 8711 (2013)

  36. 36.

    H. Jia, Y. Zhou, X. Li, Y. Li, W. Zhang, H. Fu, J. Zhao, L. Pan, X. Liu, J. Qiu, CrystEngComm 20, 6919 (2018)

  37. 37.

    F. Auzel, Chem. Rev. 104, 139 (2014)

  38. 38.

    B. Zhou, B. Shi, D. Jin, X. Liu, Nat. Nanotechnol. 10, 924 (2015)

  39. 39.

    X.F. Wang, Y. Wang, Y.Q. Lu, L. Meng, Y.Y. Bu, Appl. Phys. A 124, 521 (2018)

  40. 40.

    R. Dey, V.K. Rai, Dalton Trans. 43, 111 (2014)

  41. 41.

    X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Tan, J. Phys. Chem. C 111, 13611 (2007)

  42. 42.

    P. Du, X. Huang, J.S. Yu, Inorg. Chem. Front. 4, 1987 (2017)

  43. 43.

    W. Ran, H.M. Noh, S.H. Park, B.R. Lee, J.H. Kim, J.H. Jeong, J. Shi, G. Liu, RSC Adv. 9, 7189 (2019)

  44. 44.

    Q. Qiang, Y. Wang, New J. Chem. 43, 5011 (2019)

  45. 45.

    P. Du, L. Luo, J.S. Yu, RSC Adv. 6, 94539 (2016)

  46. 46.

    L. Tong, X. Li, R. Hua, L. Cheng, J. Sun, J. Zhang, S. Xu, H. Zheng, Y. Zhang, B. Chen, Curr. Appl. Phys. 17, 999 (2017)

  47. 47.

    J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, M. Yin, Ceram. Int. 42, 13990 (2016)

  48. 48.

    J. Xue, H.M. Noh, B.C. Choi, S.H. Park, J.H. Kim, J.H. Jeong, P. Du, Chem. Eng. J. 382, 122861 (2020)

Download references

Acknowledgements

This work was supported by the K. C. Wong Magna Fund in Ningbo University (xkzw1507) and Natural Science Foundation of Ningbo (2018A610076). This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2018R1A6A1A03025708).

Author information

Correspondence to Peng Du or Jae Su Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Du, P. & Yu, J.S. Evolution of Er3+/Yb3+-codoped NaGdF4 nanorods at room temperature for non-contact nanothermometer and optical heater. Appl. Phys. A 126, 189 (2020). https://doi.org/10.1007/s00339-020-3376-0

Download citation

Keywords

  • Upconversion
  • Nanorods
  • Rare-earth ions
  • Luminescence