Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of milling time on structural, electrical and ferroelectric features of mechanothermally synthesized multi-doped bismuth ferrite

  • 40 Accesses

Abstract

The Ni- and Ti-modified BiFeO3 nanoceramic (i.e., Bi(Ni0.45Ti0.45Fe0.10)O3) with various effective ball milling times (i.e., 10 h, 20 h and 30 h) were blended by planetary (high energy) ball milling method in conjunction with a traditional solid-state reaction route. The outcome of milling time on various properties, such as structural, electrical and ferroelectric features of Ni/Ti modified BiFeO3, was investigated thoroughly. These properties were interpreted using distinct characterization tools, such as powder X-ray diffraction, scanning electron microscope, transmission electron microscope, dielectrics and ferroelectric measurements. The particle size of as-synthesized compounds and the intensity of diffraction peaks decline obviously as the milling time rises due to the compression stress, shear friction and other mechanical forces, which are created inside ball mill jars. Investigation of dielectric properties (frequency dependent) displayed the boosted tendency of dielectric constant with increased co-doping concentration. Elaborated analysis of impedance data at selected sets of frequency/temperature estimates the grains influence and boundaries in the capacitive and resistive parameters of the synthesized samples. An elaborated investigation of the impedance spectroscopy spectrum evidently exhibited the size dependence impedance/dielectric relaxation features of the synthesized compounds. The frequency and/temperature dependence of conductivity (alternating current) confirmed the universal power law of Jonscher. The observed ferroelectric hysteresis loop trend reveals that the nanoceramic holds good ferroelectric properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J.F. Scott, Applications of modern ferroelectrics. Science 315, 954–959 (2007). https://doi.org/10.1126/science.1129564

  2. 2.

    J.F. Scott, Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007). https://doi.org/10.1038/nmat1868

  3. 3.

    L.W. Martin, R. Ramesh, Multiferroic and magnetoelectric heterostructures. Acta Mater. 60, 2449–2470 (2012). https://doi.org/10.1016/j.actamat.2011.12.024

  4. 4.

    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009). https://doi.org/10.1002/adma.200802849

  5. 5.

    R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007). https://doi.org/10.1038/nmat1805

  6. 6.

    J.C. Yang, Q. He, S.J. Suresha, C.Y. Kuo, C.Y. Peng, R.C. Haislmaier, M.A. Motyka, G. Sheng, C. Adamo, H.J. Lin, Z. Hu, L. Chang, L.H. Tjeng, E. Arenholz, N.J. Podraza, M. Bernhagen, R. Uecker, D.G. Schlom, V. Gopalan, L.Q. Chen, C.T. Chen, R. Ramesh, Y.H. Chu, Orthorhombic BiFeO3. Phys. Rev. Lett. 109, 1–5 (2012). https://doi.org/10.1103/PhysRevLett.109.247606

  7. 7.

    Y.H. Chu, Q. Zhan, C.-H. Yang, M.P. Cruz, L.W. Martin, T. Zhao, P. Yu, R. Ramesh, P.T. Joseph, I.N. Lin, W. Tian, D.G. Schlom, Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008). https://doi.org/10.1063/1.2897304

  8. 8.

    M. Fiebig, D. Fröhlich, K. Kohn, S. Leute, T. Lottermoser, V.V. Pavlov, R.V. Pisarev, Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys. Rev. Lett. 84, 5620–5623 (2000). https://doi.org/10.1103/PhysRevLett.84.5620

  9. 9.

    T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B Condens. Matter Mater. Phys. 67, 2–5 (2003). https://doi.org/10.1103/PhysRevB.67.180401

  10. 10.

    P. Scardi, C.L. Azanza Ricardo, M. Broseghini, M. D’Incau, N.M. Pugno, L. Gelisio, Modeling of the planetary ball-milling process: the case study of ceramic powders. J. Eur. Ceram. Soc. 36, 2205–2212 (2015)

  11. 11.

    H.J. Fecht, E. Hellstern, Z. Fu, W.L. Johnson, Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A 21, 2333–2337 (1990). https://doi.org/10.1007/BF02646980

  12. 12.

    P. Pochet, E. Tominez, L. Chaffron, G. Martin, Order-disorder transformation in Fe–Al under ball milling. Phys. Rev. B. 52, 4006–4016 (1995). https://doi.org/10.1103/PhysRevB.52.4006

  13. 13.

    S. Sheibani, A. Ataie, S. Heshmati-Manesh, G.R. Khayati, Structural evolution in nano-crystalline Cu synthesized by high energy ball milling. Mater. Lett. 61, 3204–3207 (2007). https://doi.org/10.1016/j.matlet.2006.11.027

  14. 14.

    T.R. Malow, C.C. Koch, Grain growth in nanocrystalline iron prepared by mechanical attrition. Acta Mater. 45, 2177–2186 (1997). https://doi.org/10.1016/S1359-6454(96)00300-X

  15. 15.

    L.B. Kong, J. Ma, H. Huang, MgAl2O4 spinel phase derived from oxide mixture activated by a high-energy ball milling process. Mater. Lett. 56, 238–243 (2002). https://doi.org/10.1016/S0167-577X(02)00447-0

  16. 16.

    Y.T. Feng, K. Han, D.R.J. Owen, Discrete element simulation of the dynamics of high energy planetary ball milling processes. Mater. Sci. Eng., A 375–377, 815–819 (2004). https://doi.org/10.1016/j.msea.2003.10.162

  17. 17.

    J. Kano, H. Mio, F. Saito, Correlation of size reduction rate of inorganic materials with impact energy of balls in planetary ball milling. J. Chem. Eng. Jpn 32, 445–448 (1999). https://doi.org/10.1252/jcej.32.445

  18. 18.

    J. Kano, F. Saito, Correlation of powder characteristics of talc during planetary ball milling with the impact energy of the balls simulated by the particle element method. Powder Technol. 98, 166–170 (1998). https://doi.org/10.1016/S0032-5910(98)00039-4

  19. 19.

    N. Kumar, A. Shukla, C. Behera, R.N.P. Choudhary, Structural, electrical and magnetic properties of Bi(Ni0.45Ti0.45Fe0.10)O3. J. Alloys Compd. 688, 858–869 (2016). https://doi.org/10.1016/j.jallcom.2016.07.009

  20. 20.

    E. Wu, POWD, an interactive program for powder diffraction data interpretation and indexing. J. Appl. Crystallogr. 22, 506–510 (1989). https://doi.org/10.1107/S0021889889005066

  21. 21.

    V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926). https://doi.org/10.1007/BF01507527

  22. 22.

    A. Shukla, N. Kumar, C. Behera, R.N.P. Choudhary, Structural and electrical characteristics of (Co, Ti) modified BiFeO3. J. Mater. Sci.: Mater. Electron. 27, 7115–7123 (2016). https://doi.org/10.1007/s10854-016-4674-3

  23. 23.

    C. Ang, Z. Yu, L. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction. Phys. Rev. B - Condens. Matter Mater. Phys. 62, 228–236 (2000). https://doi.org/10.1103/PhysRevB.62.228

  24. 24.

    S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, Dielectric and impedance spectroscopy of (Ba, Sm)(Ti, Fe)O3 system in the low-medium frequency range. J. Mater. Sci.: Mater. Electron. 26, 6572–6584 (2015). https://doi.org/10.1007/s10854-015-3255-1

  25. 25.

    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951). https://doi.org/10.1103/PhysRev.83.121

  26. 26.

    N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Structural, electrical and ferroelectric characteristics of Bi(Fe0.9La0.1)O3. Ceram. Int. 44, 21330–21337 (2018). https://doi.org/10.1016/j.ceramint.2018.08.185

  27. 27.

    C. Behera, P.R. Das, R.N.P. Choudhary, Structural and electrical properties of mechanothermally synthesized NiFe2O4 nanoceramics. J. Electron. Mater. 43, 3539–3549 (2014). https://doi.org/10.1007/s11664-014-3216-0

  28. 28.

    N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic properties of (Cd, Ti) modified BiFeO3. Phys. Lett. A 381, 2721–2730 (2017). https://doi.org/10.1016/j.physleta.2017.06.012

  29. 29.

    P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, S. Das, Structural and electrical properties of Bi3TiVO9ferroelectric ceramics. J. Alloys Compd. 731, 1171–1180 (2018). https://doi.org/10.1016/j.jallcom.2017.10.123

  30. 30.

    J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)

  31. 31.

    J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12(A = Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys. 98, 1–6 (2005). https://doi.org/10.1063/1.2125117

  32. 32.

    N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 solid solution. RSC Adv. 8, 36939–36950 (2018)

  33. 33.

    H. Jain, C. Hsieh, ‘Window’ effect in the analysis of frequency dependence of ionic conductivity. J. Non Cryst. Solids. 172–174, 1408–1412 (1994). https://doi.org/10.1016/0022-3093(94)90669-6

  34. 34.

    A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

  35. 35.

    N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R.N.P. Choudhary, Structural, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3. J. Mater. Sci.: Mater. Electron. 30, 1919–1926 (2019). https://doi.org/10.1007/s10854-018-0465-3

  36. 36.

    S. Pattanayak, R.N.P. Choudhary, P.R. Das, Effect of Praseodymium on electrical properties of BiFeO3 multiferroic. J. Electron. Mater. 43, 470–478 (2014). https://doi.org/10.1007/s11664-013-2847-x

  37. 37.

    V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, Electrical relaxation in Na2O3SiO2 glass. J. Am. Ceram. Soc. 55, 492–496 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb13413.x

  38. 38.

    S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A Mater. Sci. Process. 112, 387–395 (2013). https://doi.org/10.1007/s00339-012-7412-6

  39. 39.

    A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 97, 3–6 (2005). https://doi.org/10.1063/1.1881775

  40. 40.

    J. Rout, R.N.P. Choudhary, Structural, electrical and magnetic behavior of mechanothermally synthesized multidoped bismuth ferrite. Ceram. Int. 44, 11543–11553 (2018). https://doi.org/10.1016/j.ceramint.2018.03.215

  41. 41.

    N. Hirose, A.R. West, Impedance spectroscopy of undoped BaTiO3 ceramics. J. Am. Ceram. Soc. 79, 1633–1641 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08775.x

  42. 42.

    B. Pati, R.N.P. Choudhary, P.R. Das, Phase transition and electrical properties of strontium orthovanadate. J. Alloys Compd. 579, 218–226 (2013). https://doi.org/10.1016/j.jallcom.2013.06.050

  43. 43.

    B. Senthilkumar, R. Kalai Selvan, P. Vinothbabu, I. Perelshtein, A. Gedanken, Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique. Mater. Chem. Phys. 130, 285–292 (2011). https://doi.org/10.1016/j.matchemphys.2011.06.043

  44. 44.

    N. Sivakumar, A. Narayanasamy, N. Ponpandian, J.-M. Greneche, K. Shinoda, B. Jeyadevan, K. Tohji, Effect of mechanical milling on the electrical and magnetic properties of nanostructured Ni0.5Zn0.5Fe2O4. J. Phys. D Appl. Phys. 39, 4688–4694 (2006). https://doi.org/10.1088/0022-3727/39/21/028

  45. 45.

    A.K. Jonscher, Universal Relaxation Law, London, 1996

Download references

Acknowledgements

The financial support received from SERB-DST, Government of India, New Delhi, in the form of Research Project No. EMR/2015/002420 to one of the author Alok Shukla is gratefully acknowledged.

Author information

Correspondence to Alok Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Shukla, A., Kumar, N. et al. Effects of milling time on structural, electrical and ferroelectric features of mechanothermally synthesized multi-doped bismuth ferrite. Appl. Phys. A 126, 181 (2020). https://doi.org/10.1007/s00339-020-3365-3

Download citation

Keywords

  • Nanoceramics
  • XRD
  • Impedance spectroscopy
  • Ferroelectric