Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanical hardness estimation of heat-treated DIN50Cr3 spring steel utilizing laser-induced breakdown spectroscopy (LIBS) inverse calibration

  • 65 Accesses

Abstract

In various industrial applications, particularly for suspension systems, a range of mechanical properties are required to meet the designer requirements. In the present work, the semi-nondestructive laser-induced breakdown spectroscopy (LIBS) technique was used for the first time to estimate the hardness (HV units) of the light duty low-carbon spring steel DIN50Cr3 through LIBS calibration curves. For this purpose, three distinct spring steel samples, namely DIN50Cr3 were successfully treated by subjecting to various treatment regimes, namely R1 annealing, R2 quenching and R3 normalizing. The calibration curves were constructed using the ratio of ionic to atomic line intensities of LIBS spectra versus the Vickers mechanical hardness as well as microstructural analyses were performed. The mechanical hardness for spring steel DIN50Cr3 subjected to different tempering heat treatment regimes R4, R5 and R6 is then deduced from the calibration curves, and their values were correlated with those obtained from Vickers test. Microstructural analysis was performed using scanning electron microscopy (SEM) and correlated the variation of the obtained hardness level to the microstructural changes accompanying all heat treatment regimes.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    D.A. Cremers, F.-Y. Yueh, J.P. Singh, H. Zhang, Encycl. Anal. Chem. Appl. Theory Instrum. (2006)

  2. 2.

    J.M. Vadillo, J.J. Laserna, Spectrochim. Acta Part B At. Spectrosc. 59, 147–161 (2004)

  3. 3.

    A. Hussein, A. Marzouk, M. Harith, Spectrochim. Acta Part B 113, 93–99 (2015)

  4. 4.

    S.M. Aberkane, M. Abdelhamid, K. Yahiaoui, C. Mahieddoune, S. Abdelli-Messaci, M.A. Harith, Thin Solid Films 653, 293–300 (2018)

  5. 5.

    S.M. Aberkane, M. Abdelhamid, F. Mokdad, K. Yahiaoui, S. Abdelli-Messaci, M.A. Harith, Anal. Methods 9, 3696–3703 (2017)

  6. 6.

    A.M. Mostafa, S.A.E.K.M. Hamed, H. Afifi, S. Mohamady, Appl. Phys. A 125(8), 559 (2019)

  7. 7.

    M.M. ElFaham, A.M. Mostafa, G.M. Nasr, J. Mol. Struct. 1201, 127211 (2020). https://doi.org/10.1016/j.molstruc.2019.127211

  8. 8.

    M. Hassan, M. Abdelhamid, O.A. Nassef, M. Abdel-Harith, An Int. J. 27, 485–500 (2018)

  9. 9.

    M. Hassan, M. Sighicelli, A. Lai, F. Colao, A.H.H. Ahmed, R. Fantoni, M.A. Harith, Spectrochim. Acta Part B At. Spectrosc. 63, 1225–1229 (2008)

  10. 10.

    M. Abdelhamid, S. Grassini, E. Angelini, G.M. Ingo, M.A. Harith, Spectrochim. Acta Part B At. Spectrosc. 65, 695–701 (2010)

  11. 11.

    A. Elhassan, A. Giakoumaki, D. Anglos, G.M. Ingo, L. Robbiola, M.A. Harith, Spectrochim. Acta Part B At. Spectrosc. 63, 504–511 (2008)

  12. 12.

    V. Lazic, S. Jovicevic, R. Fantoni, F. Colao, Spectrochim. Acta Part B At. Spectrosc. 62, 1433–1442 (2007)

  13. 13.

    M.M. ElFaham, M. Okil, A.M. Mostafa, Opt. Laser Technol. 108, 634–641 (2018). https://doi.org/10.1016/j.optlastec.2018.07.022

  14. 14.

    Z. Ramezanian, S.M.R. Darbani, A.E. Majd, Appl. Opt. 56(24), 6917–6922 (2017). https://doi.org/10.1364/ao.56.006917

  15. 15.

    J.S. Cowpe et al., Spectrochim. Acta Part B At. Spectrosc 66(3–4), 3–4 (2011). https://doi.org/10.1016/j.sab.2011.03.007

  16. 16.

    J.J. Gilman, Chemistry and physics of mechanical hardness (Wiley, New York, 2009)

  17. 17.

    V.N. Lednev et al., J. Phys. Conf. Ser. 1109, 012050 (2018). https://doi.org/10.1088/1742-6596/1109/1/012050

  18. 18.

    M.M. ElFaham, A.M. Alnozahy, A. Ashmawy, Mater. Chem. Phys. 207, 30–35 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.036

  19. 19.

    K. Tsuyuki, S. Miura, N. Idris, K.H. Kurniawan, T.J. Lie, K. Kagawa, Appl. Spectrosc. 60, 61–64 (2006)

  20. 20.

    Z.A. Abdel-Salam, A.H. Galmed, E. Tognoni, M.A. Harith, Spectrochim. Acta Part B At. Spectrosc. 62, 1343–1347 (2007)

  21. 21.

    Z.A. Abdel-Salam, Z. Nanjing, D. Anglos, M.A. Harith, Appl. Phys. B 94, 141–147 (2009)

  22. 22.

    M.M. ElFaham, M. Okil, N.M. Nagy, Opt. Laser Technol. 106, 69–75 (2018). https://doi.org/10.1016/j.optlastec.2018.03.018

  23. 23.

    S.M. Aberkane, A. Bendib, K. Yahiaoui, S. Boudjemai, S. Abdelli-Messaci, T. Kerdja, S.E. Amara, M.A. Harith, Appl. Surf. Sci. 301, 225–229 (2014)

  24. 24.

    D.V. Wilson, B. Russell, Acta Metall. 8, 468–479 (1960)

  25. 25.

    D.H.L. Ng, K.S. Cho, M.L. Wong, S.L.I. Chan, X.-Y. Ma, C.C.H. Lo, Mater. Sci. Eng. A 358, 186–198 (2003)

  26. 26.

    K.E. Thelning (ed.), Steel and Its Heat Treated (Butterworth-Heinemann, Oxford, 2013)

  27. 27.

    A.N. Isfahany, H. Saghafian, G. Borhani, J. Alloys Compd. 509, 3931–3936 (2011)

  28. 28.

    A.K. Srivastava, G. Jha, N. Gope, S.B. Singh, Mater. Charact. 57, 127–135 (2006)

  29. 29.

    M.S. Htun, S.T. Kyaw, K.T. Lwin, J. Met. Mater. Miner. 18, 191–197 (2008)

  30. 30.

    W.D. Callister, Jr., D.G. Rethwish, Materials Science and Engineering, 9th edn, SI version (2014). ISBN: 978-1-118-31922-2

  31. 31.

    Mohamed M. Elfaham, Usama Eldemerdash, Opt. Laser Technol. 111, 338–346 (2019)

  32. 32.

    H. Kuhn, D. Medlin, Mechanical Testing and Evaluation, ASM Handbook, vol. 8 (2000)  ISBN: 978-0-87170-389-7

  33. 33.

    Z.A. Abdel-Salam et al., Spectrochimica Acta Part B 62, 1343–1347 (2007). https://doi.org/10.1016/j.sab.2007.10.033

  34. 34.

    S. Messaoud-Aberkane et al., Spectrochim. Acta Part B 113, 147–151 (2015). https://doi.org/10.1016/j.sab.2015.09.012

  35. 35.

    A.M. Popov, T.A. Labutin, N.B. Zorov, Mosc. Univ. Chem. Bull. 64(6), 366–377 (2009). https://doi.org/10.3103/S0027131409060030

Download references

Author information

Correspondence to Mohamed M. ElFaham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

ElFaham, M.M., Elthalabawy, W.M., Elzahed, O. et al. Mechanical hardness estimation of heat-treated DIN50Cr3 spring steel utilizing laser-induced breakdown spectroscopy (LIBS) inverse calibration. Appl. Phys. A 126, 167 (2020). https://doi.org/10.1007/s00339-020-3348-4

Download citation

Keywords

  • LIBS calibration curve
  • Spring steel DIN 50Cr3
  • Surface hardness
  • Heat treatment regimes
  • SEM
  • Vickers test