Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparative study of the thermal diffusivity of SiO2–Au nanoparticles in water base

  • 11 Accesses


Two SiO2–Au nanoparticles were prepared. Silicon dioxide (SiO2) structures with average size of 143 and 90 nm were synthesized using the sol–gel method. Gold (Au) nanoparticles of ~ 5 nm were deposited using the deposition–precipitation process on each dielectric platform. The concentration of silanol groups of SiO2 spheres was obtained. The size and form of SiO2, Au and SiO2–Au nanoparticles were evaluated by transmission electron microscopy (TEM). The TEM micrographs confirmed the size and spherical form for SiO2 and Au nanoparticles with high monodispersity, the decoration of SiO2 spheres with metallic nanoparticles was also confirmed. The reflectance spectrum revealed a decreased of reflectivity around 516 nm for SiO2–Au structures, the decrease of reflectance was associated with the presence of gold nanoparticles on dielectric spheres. The SiO2–Au structures (at different mass 0.1–0.6 mg/ml) were dispersed in deionized water. Thermal diffusivity of SiO2–Au particles in water was studied using the thermal lens (TL) spectroscopy. The results revealed an increase in thermal diffusivity as the SiO2–Au concentration was increased. The thermal property was independent on the size of the SiO2 spheres used.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    W. Stöber, A. Fink, Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1), 62–69 (1968).

  2. 2.

    C. Kuang-Hsiu, P. Ying-Chih Pu, C. Kao-Der, L. Yi-Fan, L. Chia-Ming, Y. Jien-Wei, S. Han-C, H. Yung-Jung, Ag-Nanoparticle-decorated SiO2 nanospheres exhibiting remarkable plasmon-mediated photocatalytic properties. J Phys Chem C 116(35), 19039–19045 (2012).

  3. 3.

    M. Nur-Kamilah, W. Mohd Afiq, W. Mohd Khalik, A. A. Azmi, Synthesis and characterization of silicasilver coreshell nanoparticles. Malays Anal Sci Soc 43(2), 290–299 (2009).

  4. 4.

    G. Zhong-Ze, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, O. Sato, Fabrication of a metal‐coated three‐dimensionally ordered macroporous film and its application as a refractive index sensor. Angew Chem 41(7), 1153–1156 (2002).;2-0

  5. 5.

    A. Convertino, M. Cuscunà, F. Martelli, M. Manera, R. Rella, Silica nanowires decorated with metal nanoparticles for refractive index sensors: three-dimensional metal arrays and light trapping at plasmonic resonances. J Phys Chem 118(1), 685–690 (2014).

  6. 6.

    F. Ruffino, M.G. Grimaldi, Au nanoparticles decorated SiO2 nanowires by dewetting on curved surfaces: facile synthesis and nanoparticles–nanowires sizes correlation. J Nanopart Res 15, 1–17 (2013).

  7. 7.

    A.B. Phantagare, S.D. Dhole, S.S. Dahiwale, V.N. Bhoraskar, Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres. Appl Surf Sci 441, 744–753 (2018).

  8. 8.

    J.C.Y. Kah, N. Phonthammachai, R.C.Y. Wang, J. Song, T. White, S. Mhaisalkar, I. Ahmadb, C. Shepparda, M. Olivo, Synthesis of gold nanoshells based on the deposition–precipitation process. Gold Bull 41(1), 23–36 (2008).

  9. 9.

    L. Wang, T. Cheang, S. Wang, Z. Hu, Z. Xing, W. Qu, A. Xu, Monodisperse Au/aminosilica composite nanospheres: facile one-step synthesis and their applications in gene transfection. J Mater Res 27(18), 2425–2430 (2012).

  10. 10.

    A. Colombelli, M.G. Manera, A. Taurino, M. Catalano, A. Convertino, R. Rella, Au nanoparticles decoration of silica nanowires for improved optical bio-sensing. Sens Actuators B Chem 226, 589–597 (2016).

  11. 11.

    I. Kim, E. Joachim, H. Choi, K. Kim, Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed Nanotechnol Biol Med 11(6), 1407–1416 (2015).

  12. 12.

    I.H. El-Sayed, X. Huang, M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5), 829–834 (2005).

  13. 13.

    A. Orlando, M. Colombo, D. Prosperi, F. Corsi, A. Panariti, I. Rivolta, M. Masserini, E. Cazzaniga, Evaluation of gold nanoparticles biocompatibility: a multiparametric study on cultured endothelial cells and macrophages. J Nanopart Res 18(3), 58 (2016).

  14. 14.

    P. García-Calavia, G. Bruce, L. Pérez-García, D.A. Russel, Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem Photobiol Sci 17, 1534–1552 (2018).

  15. 15.

    M. Khosroshahi, M.S. Nourbakhsh, In vitro skin wound soldering using SiO2/Au nanoshells and a diode laser. Med Laser Appl 26(1), 35–42 (2011).

  16. 16.

    A.H. Abdelrazek, O.A. Alawi, S.N. Kazi, N. Yusoff, Z. Chowdhury, A.D. Sarhan, A new approach to evaluate the impact of thermophysical properties of nanofluids on heat transfer and pressure drop. Int Commun Heat Mass Transfer 95, 161–170 (2018).

  17. 17.

    E. Shahriarr, Y.W.M. Mat, R. Zamiri, The effect of nanoparticle size on thermal diffusivity of gold nano-fluid measured using thermal lens technique. J Euro Opt Soc Rapid Publ 8, 13026 (2013).

  18. 18.

    A. Netzahual-Lopantzi, J.F. Sánchez-Ramírez, J.L. Jiménez-Pérez, D. Cornejo-Monroy, G. López-Gamboa, Z.N. Correa-Pacheco, Study of the thermal diffusivity of nanofluids containing SiO2 decorated with Au nanoparticles by thermal lens spectroscopy. Appl Phys A 125, 588 (2019).

  19. 19.

    S. Yuaga, M. Okabayashi, H. Ohno, K. Suzuki, K. Kusumoto, U.S. Patent 4, 764,497, 1988

  20. 20.

    J.L. Jiménez-Pérez, J.F. Sánchez-Ramírez, D. Cornejo-Monroy, R. Gutiérrez-Fuentes, J.A. Pescador-Rojas, A. Cruz-Orea, C. Jacinto, Photothermal study of two different nanofluids containing SiO2 and TiO2 semiconductor nanoparticles. Int J Thermophys 33(1), 69–79 (2012).

  21. 21.

    R. Carbajal-Valdez, J.L. Jiménez-Pérez, A. Cruz-Orea, Z.N. Correa-Pacheco, M. Alvarado-Noguez, I.C. Romero-Ibarra, J.G. Mendoza-Álvarez, Thermal properties of centrifuged oils measured by alternative photothermal techniques. Thermochim Acta 657, 66–71 (2017).

  22. 22.

    J. Shen, R. Lowe, R.D. Snook, A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem Phys 165(1–3), 385–396 (1992).

  23. 23.

    T. Matsoukas, E. Gulari, Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. J Colloid and Interface Sci 124(1), 252–261 (1988).

  24. 24.

    D. Cornejo-Monroy, J.A. Pescador-Rojas, J.F. Sánchez-Ramírez, J.L. Herrera-Pérez, Nanoesferas monodispersas de SiO2: síntesis controlada y caracterización. Revista Superficies y Vacio 22(3), 44–48 (2009)

  25. 25.

    H. Nabeshi, T. Yoshikawa, K. Matsuyama, Y. Nakazato, S. Tochigi, S. Kondoh, T. Hirai, T. Akase, K. Nagano, Y. Abe, Y. Yoshioka, H. Kamada, N. Itoh, S. Thunoda, Y. Tsutsumi, Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol 8(1), 1–10 (2011).

  26. 26.

    S. Wang, D.K. Wang, S. Smart, J. Diniz da Costa, Ternary phase-separation investigation of sol-gel derived silica from ethyl silicate 40. Sci Rep 5, 1–11 (2015).

  27. 27.

    J.L. Montaño-Priede, J.P. Coelho, A. Guerrero-Martínez, O. Peña-Rodríguez, U. Pal, Fabrication of monodisperse Au@SiO2 nanoparticles with highly stable silica layers by ultrasound-assisted Stöber method. J Phys Chem C 121(17), 9543–9551 (2017).

  28. 28.

    I.A. Rhaman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, A. Bakar, R. Adnan, C.K. Chee, An optimized sol-gel synthesis of stable primary equivalent silica particles. Colloids Surf A 294, 102–110 (2007).

  29. 29.

    V. Lenart, N. Astrath, R. Turchiello, G. Goya, S. Gómez, Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique. J Appl Phys 123(8), 1–4 (2018).

  30. 30.

    G.A. López-Muñoz, J.A. Balderas-López, J. Ortega-López, J.A. Pescador-Rojas, J. Santoyo-Salazar, Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes. Nanoscale Res Lett 7(667), 1–7 (2012).

  31. 31.

    I.A. Rhaman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, C.K. Chee, Size-dependent physicochemical and optical properties of silica nanoparticles. Mater Chem Phys 114, 328–332 (2009).

  32. 32.

    D.H. Kumar, H.E. Patel, V.R.R. Umar, T. Sundararajan, T. Pradeep, S. Das, Model for heat conduction in nanofluids. Phys Rev Lett 93(14), 1–4 (2004)

  33. 33.

    Z. Zheng, L. Qiu, G. Su, D. Tang, Y. Liao, C. Yunfa, Thermal conductivity and thermal diffusivity of SiO2 nanopowder. J Nanopart Res 13(12), 6887–6893 (2011).

Download references

Author information

Correspondence to Angel Netzahual Lopantzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Netzahual Lopantzi, A., Sánchez Ramírez, J.F. & Jiménez Pérez, J.L. Comparative study of the thermal diffusivity of SiO2–Au nanoparticles in water base . Appl. Phys. A 126, 172 (2020).

Download citation


  • Thermal diffusivity
  • SiO2 spheres
  • Au nanoparticles