Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structural, magnetic and magnetocaloric study of Ni0.5Zn0.5Fe2O4 spinel

Abstract

The objective of this work was to study the influence of annealing temperature on the structural changes and magnetic properties of the Ni0.5Zn0.5Fe2O4 spinel-type nanoparticles. The nanomaterial was prepared by the chemical co-precipitation method and studied by thermal analysis (TG–DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), magnetic measurements and 57Fe Mössbauer spectrometry. XRD has revealed that the as-prepared sample shows poor crystallization with less defined diffraction lines. As the annealing temperature increases, the diffraction peaks become intense and well defined, reflecting perfect crystallization of the sample. The estimated crystallite size varies from 25 to 83 nm. TEM observations give information on the morphology and confirm the XRD results. To quantify the proportions of the iron atoms in the tetrahedral and octahedral sites, in-field Mössbauer spectrometry measurements were carried out at low temperature. Saturation magnetization (Ms) and the average hyperfine magnetic field \( \left( {\left\langle {B_{\text{hf}} } \right\rangle } \right) \) increase gradually with annealing temperature. For the sample annealed at 1000 °C, the magnetic entropy change \( \left| {\Delta S_{\text{M}}^{\hbox{max} } } \right| \) and relative cooling power, measured under field change of 2T, are 0.67 J kg−1 K−1 and 112.5 J kg−1, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    E. Veena Gopalan, I.A. Al-Omari, K.A. Malini, P.A. Joy, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, Impact of zinc substitution on the structural and magnetic properties of chemically derived nanosized manganese zinc mixed ferrites. J. Magn. Magn. Mater. 321, 1092–1099 (2009)

  2. 2.

    S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. J. Appl. Phys. 108, 93920 (2010)

  3. 3.

    M.S. Anwar, F. Ahmed, B.H. Koo, Enhanced relative cooling power of Ni1−xZnxFe2O4 (0.0 ≤ x ≤ 0.7) ferrites. Acta Mater. 71, 100–107 (2014)

  4. 4.

    M.E. McHenry, D.E. Laughlin, Nano-scale materials development for future magnetic applications. Acta Mater. 48, 223–238 (2000)

  5. 5.

    G.F. Goya, H.R. Rechenberg, J.Z. Jiang, Structural and magnetic properties of ball milled copper ferrite. J. Appl. Phys. 84, 1101 (1998)

  6. 6.

    Z.X. Yue, J. Zhou, X.H. Wang, Z.L. Gui, L.T. Li, Low-temperature sintered Mg–Zn–Cu ferrite prepared by auto-combustion of nitrate–citrate gel. J. Mater. Sci. Lett. 20, 1327–1329 (2001)

  7. 7.

    N. Ponpandian, P. Balaya, A. Narayanasamy, Electrical conductivity and dielectric behaviour of nanocrystalline NiFe2O4 spinel. J. Phys.: Condens. Matter. 14, 3221–3237 (2002)

  8. 8.

    D.G. Chen, X.G. Tang, J.B. Wu, W. Zhang, Q.X. Liu, Y.P. Jiang, Effect of grain size on the magnetic properties of superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles by co-precipitation process. J. Magn. Magn. Mater. 323, 1717–1721 (2011)

  9. 9.

    R.C. Pedroza, S.W. da Silva, M.A.G. Soler, P.P.C. Sartoatto, D.R. Rezende, P.C. Morais, Raman study of nanoparticle-template interaction in a CoFe2O4/SiO2-based nanocomposite prepared by sol–gel method. J. Magn. Magn. Mater. 289, 139–141 (2005)

  10. 10.

    H. Yang, X.C. Zhang, W.Q. Ao, G.Z. Qiu, Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Mater. Res. Bull. 39, 833–837 (2004)

  11. 11.

    M. Ajmal, A. Maqsood, Influence of zinc substitution on structural and electrical properties of Ni1−xZnxFe2O4 ferrites. Mater. Sci. Eng. B 139, 164–170 (2007)

  12. 12.

    J.M. Daniels, A. Rosencwaig, Mössbauer study of the Ni–Zn ferrite system. Rev. Can. Phys. 48(4), 381–396 (1970)

  13. 13.

    H. Yang, X.C. Zhang, C.H. Huang, W.G. Yang, G.Z. Qiu, Synthesis of ZnFe2O4 nanocrystallites by mechanochemical reaction. J. Phys. Chem. Solids 65, 1329–1332 (2004)

  14. 14.

    J.H. Liu, L. Wang, F.S. Li, Magnetic properties and Mössbauer studies of nanosized NiFe2O4 particles. J. Mater. Sci. 40, 2573–2575 (2005)

  15. 15.

    I.S. Lyubutin, C.R. Lin, S.S. Starchikov, A.O. Baskakov, N.E. Gervits, K.O. Funtov, Y.T. Tseng, W.J. Lee, K.Y. Shih, J.S. Lee, Structural, magnetic, and electronic properties of mixed spinel NiFe2−xCrxO4 nanoparticles synthesized by chemical combustion. Inorg. Chem. 56, 12469–12475 (2017)

  16. 16.

    G. Salazar-Alvarez, R.T. Olsson Jordi Sort, W.A.A. Macedo, J.D. Ardisson, M. Dolores Baro, U.W. Gedde, J. Nogues, Enhanced coercivity in co-rich near-stoichiometric CoxFe3−xO4+δ nanoparticles prepared in large batches. Chem. Mater. 19, 4957–4963 (2007)

  17. 17.

    S.M. Benford, G.V. Brown, TS diagram for gadolinium near the Curie temperature. J. Appl. Phys. 52, 2110 (1981)

  18. 18.

    E. Oumezzine, S. Hcini, M. Baazaoui, E.K. Hlil, M. Oumezzine, Structural, magnetic and magnetocaloric properties of Zn0.6−xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol–gel method. Powder Technol. 278, 189–195 (2015)

  19. 19.

    K. El Maalam, L. Fkhar, M. Hamedoun, A. Mahmoud, F. Boschini, E.K. Hlil, A. Benyoussef, O. Mounkachi, Magnetocaloric properties of zinc–nickel ferrites around room temperature. J. Supercond. Nov. Magn. 30(7), 1943–1947 (2017)

  20. 20.

    R.A. Brand, Normos Mössbauer fitting program. Nucl. Instr. Methods B 28, 398–416 (1987)

  21. 21.

    S. Ayyappan, G. Gnanaprakash, G. Paneerselvam, M.P. Antony, Effect of surfactant monolayer on reduction of Fe3O4 nanoparticles under vacuum. J. Phys. Chem. 112C, 18376–18383 (2008)

  22. 22.

    S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, J.H. Kim, A.V. Moholkar, C.H. Bhosale, Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. J. Magn. Magn. Mater. 363, 114–120 (2014)

  23. 23.

    A.S. Albuquerque, J.D. Ardison, W.A.A. Macedo, M.C.M. Alves, Nanosized powders of NiZn ferrite: synthesis, structure, and magnetism. J. Appl. Phys. 87, 4352 (2000)

  24. 24.

    M.E. Lopez-Herrera, J.M. Greneche, F. Varret, Analysis of the Mössbauer quadrupole spectra of some amorphous fluorides. Phys. Rev. B 28, 4944–4948 (1983)

  25. 25.

    J.J. Thomas, A.B. Shinde, P.S.R. Krishna, N. Kalarikkal, Cation distribution and micro level magnetic alignments in the nanosized nickel zinc ferrite. J. Alloys Compd. 546, 77–83 (2013)

  26. 26.

    J.A. Ramos Guivar, E.A. Sanches, F. Bruns, E. Sadrollahi, M.A. Morales, E.O. Lópeze, F.J. Litterst, Vacancy ordered γ-Fe2O3 nanoparticles functionalized with nanohydroxyapatite: XRD, FTIR, TEM, XPS and Mössbauer studies. Appl. Surf. Sci. 389, 721–734 (2016)

  27. 27.

    V. Sreeja, S. Vijayanand, S. Deka, P.A. Joy, Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method. Hyperfine Interact. 183(99), 271–279 (2008)

  28. 28.

    J.M. Greneche, Mössbauer Spectroscopy, ed. by Y. Yoshida, G. Langouche (Springer, Berlin, 2013), pp. 187–241

  29. 29.

    V. Šepelák, D. Baabe, D. Mienert, F.J. Litterst, K.D. Becker, Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4. Scr. Mater. 48, 961–966 (2003)

  30. 30.

    I. Bergmann, V. Šepelák, K.D. Becker, Preparation of nanoscale MgFe2O4 via non-conventional mechanochemical route. Sol. State Ion. 177, 1865–1868 (2006)

  31. 31.

    J. Jadhav, S. Biswas, A.K. Yadav, S.N. Jha, D. Bhattacharyya, Structural and magnetic properties of nanocrystalline Ni–Zn ferrites: in the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017)

  32. 32.

    M.A. Gabal, Y.M. Al Angari, Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4. Mater. Chem. Phys. 115, 578–584 (2009)

  33. 33.

    MdS Hossain, S.M. Hoque, S.I. Liba, S. Choudhury, Effect of synthesis methods and a comparative study of structural and magnetic properties of zinc ferrite. AIP Adv. 7, 105321 (2017)

  34. 34.

    M.K. Anupama, N. Srinatha, S. Matteppanavar, B. Angadi, B. Sahoo, B. Rudraswamy, Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 44, 4946–4954 (2018)

  35. 35.

    J. Curiale, M. Granada, H.E. Troiani, R.D. Sanchez, A.G. Leyva, P. Levy, K. Samwer, Magnetic dead layer in ferromagnetic manganite nanoparticles. Appl. Phys. Lett. 95, 043106 (2009)

  36. 36.

    J. Chappert, R.B. Frankel, Mössbauer study of ferrimagnetic ordering in nickel ferrite and chromium-substituted nickel ferrite. Phys. Rev. Lett. 19, 570–572 (1967)

  37. 37.

    T.M. Clark, B.J. Evans, Enhanced magnetization and cation distributions in nanocrystalline ZnFe2O4: a conversion electron Mossbauer spectroscopic investigation. IEEE Trans. Mag. 33, 3745 (1997)

  38. 38.

    A.E. Berkowitz, R.H. Kodama, S.A. Makhlol, F.T. Parker, F.E. Spada, E.J. McNiff Jr., S. Foner, Anomalous properties of magnetic nanoparticles. J. Magn. Magn. Mater. 196–197, 591–594 (1999)

  39. 39.

    J.P. Chen, C.M. Sorense, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B: Condens. Matter 54, 9288–9296 (1996)

  40. 40.

    S. Verma, P.A. Joy, Magnetic properties of superparamagnetic lithium ferrite nanoparticles. J. Appl. Phys. 98, 124312 (2005)

  41. 41.

    B.K. Banerjee, On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

  42. 42.

    J. Mira, J. Rivas, F. Rivadulla, C. Vázquez-Vázquez, M.A. López-Quintela, Change from first- to second-order magnetic phase transition in La2/3(Ca, Sr)1/3MnO3 perovskites. Phys. Rev. B 60, 2998 (1999)

  43. 43.

    H. Saito, T. Yokoyama, K. Fukamichi, Itinerant-electron metamagnetism and the onset of ferromagnetism in Laves phase Lu(Co1−xGax)2 compounds. J. Phys.: Condens. Matter 9, 9333 (1997)

  44. 44.

    V.K. Pecharsky, K.A. Gschneidner Jr., Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999)

  45. 45.

    A. Verma, T.C. Goel, R.G. Mendiratta, P. Kishan, Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208, 13–19 (2000)

  46. 46.

    R. Felhi, H. Omrani, M. Koubaa, W. Cheikhrouhou Koubaa, A. Cheikhrouhou, Enhancement of magnetocaloric effect around room temperature in Zn0.7Ni0.3−xCuxFe2O4 (0 ≤ x ≤ 0.2) spinel ferrites. J. Alloys Compd. 758, 237 (2018)

  47. 47.

    R. Thljaoui, W. Boujelben, M. Pekala, K. Pekala, J.F. Fagnard, P. Vanderbemden, M. Donten, A. Cheikhrouhou, Magnetocaloric effect of monovalent K doped manganites Pr0.6Sr0.4−xKxMnO3 (x = 0 to 0.2). J. Magn. Magn. Mater. 352, 6–12 (2014)

Download references

Author information

Correspondence to M. Sajieddine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rabi, B., Essoumhi, A., Sajieddine, M. et al. Structural, magnetic and magnetocaloric study of Ni0.5Zn0.5Fe2O4 spinel. Appl. Phys. A 126, 174 (2020). https://doi.org/10.1007/s00339-020-3344-8

Download citation

Keywords

  • Nickel–zinc ferrite nanoparticles
  • X-ray diffraction
  • 57Fe Mössbauer spectrometry
  • Magnetic properties
  • Magnetocaloric effect