Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structural, dielectric, impedance and modulus spectroscopy of BiLa2TiVO9 ceramic

  • 12 Accesses

Abstract

A standard solid-state ceramic technology (i.e., high-temperature solid-state reaction method) was used to fabricate new bismuth layer Aurivillius compound, BiLa2TiVO9. The formation of a single phase with an orthorhombic structure was confirmed by the X-ray diffraction structural analysis. The tangent loss measured at 200 °C is found to be in between 0.03 and 0.05 in the frequency ranging from 1 kHz to 1 MHz. The dielectric constant is found to be around 300 at room temperature. The resistance and reactance parts of complex impedance have been determined by the complex impedance spectroscopy (CIS) techniques. The electric modulus spectroscopy study of the compound confirmed the presence of the short range displacement of charge carriers. Jonscher’s power law fitting has been used to verify our experimental data of conductivity spectra. The nature of variation of exponent (n) obtained from the fitting follows the correlated barrier hopping as the predominant conduction mechanism in the sample. Room-temperature polarization loop confirms the ferroelectric nature of the sample.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    B. Li, X. Wang, X. Han, X. Qi, L. Li, Spark-plasma-sintering of bulk SrBi2Ta2O9 materials. J. Mater. Sci. 39, 2621–2623 (2004)

  2. 2.

    K.R. Kendall, C. Navas, J.K. Thomas, H.C.Z. Loye, Recent developments in oxide ion conductors: Aurivillius phases. Chem. Mater. 8, 642–649 (1996)

  3. 3.

    H. Yan, H. Zhang, M.J. Reece, X. Dong, Thermal depoling of high Curie point Aurivillius phase ferroelectric ceramics. Appl. Phys. Lett. 87, 082911 (2005)

  4. 4.

    H. Yan, H. Zhang, R. Ubic, M. Reece, J. Liu, Z. Shen, Orientation dependence of dielectric and relaxor behaviour in Aurivillius phase BaBi2Nb2O9 ceramics prepared by spark plasma sintering. J. Mater. Sci. Mater. Electron. 17, 657–661 (2006)

  5. 5.

    E.C. Subbarao, A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 23, 665–676 (1962)

  6. 6.

    H. Amorin, V.V. Shartsman, A.L. Kholkin, E.V. Costa, Ferroelectric and dielectric anisotropy in high-quality SrBi2Ta2O9 single crystals. Appl. Phys. Lett. 85, 5667–5669 (2004)

  7. 7.

    B.J. Kennedy, Effect of temperature on cation disorder in ABi2Nb2O9 (A = Sr, Ba). J. Mater. Chem. 9, 541–544 (1999)

  8. 8.

    K. Uchino, Ferroelectric devices (Marcel Dekker Inc., New York, 1997)

  9. 9.

    R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Materials for high temperature acoustic and vibration sensors: a review. Appl. Acoust. 41, 299–324 (1994)

  10. 10.

    R.L. Withers, J.G. Thompson, A.D. Rae, The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6. J. Solid State Chem. 94, 404–417 (1991)

  11. 11.

    C. Jovaleki, M. Pavlovi, P. Osmokrovi, L. Atanasoska, X-ray photoelectron spectroscopy study of Bi4Ti3O12 ferroelectric ceramics. Appl. Phys. Lett. 72, 1051–1053 (1998)

  12. 12.

    C.A.P. de Araujo, J.D. Cuchaiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Fatigue-free ferroelectric capacitors with platinum-electrodes. Nature 374, 627 (1995)

  13. 13.

    H. Du, S. Wohlrab, S. Kaskel, Synthesis, structure and properties of Bi3.25Pr0.75Ti2.97V0. 03O12 ferroelectric ceramics. J. Phys. Chem. C 111, 11095–11103 (2007)

  14. 14.

    H. Du, L. Tang, S. Kaskel, Preparation, microstructure, and ferroelectric properties of Bi3.25La0.75Ti3−x MxO12 (M = Mo, W, Nb, V) ceramics. J. Phys. Chem. C 113, 1329–1339 (2009)

  15. 15.

    L. Yan, L.B. Kong, C.K. Ong, Pulsed laser deposition and characterization of Bi3.25Nd0.75Ti3O12 thin films buffered with La0.7Sr0.3MnO3 electrode. Mater. Lett. 58, 2953–2957 (2004)

  16. 16.

    Z. Zhou, X. Dong, H. Chen, Structural and electrical properties of W6+-doped Bi3TiNbO9 high-temperature piezoceramics. J. Am. Ceram. Soc. 89, 1756–1760 (2006)

  17. 17.

    Y.Y. Wu, L. Wang, Z.Q. Hua, T. Li, Microstructure and electrical properties of vanadium doped Bi4Ti3O12 layer-structured ferroelectric ceramics. Adv. Mater. Res. 548, 333–340 (2012)

  18. 18.

    P.H. Park, B.B. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1995)

  19. 19.

    A. Garg, Z.H. Barber, M. Dawber, J.F. Scott, Orientation dependence of ferroelectric properties of pulsed-laser-ablated Bi4−xNdxTi3O12 films. Appl. Phys. Lett. 83, 2414–2416 (2003)

  20. 20.

    A. Garg, A. Snedden, P. Lightfoot et al., Investigation of structural and ferroelectric properties of pulsed-laser-ablated epitaxial Nd-doped bismuth titanate films. J. Appl. Phys. 96, 3408–3412 (2004)

  21. 21.

    U. Chon, J.S. Shim, H.M. Jang, Ferroelectric properties and crystal structure of praseodymium-modified bismuth titanate. J. Appl. Phys. 93, 4769–4775 (2003)

  22. 22.

    K.T. Kim, C.I. Kim, D.H. Kang, I.W. Shim, The effect of Eu substitution on the ferroelectric properties of Bi4Ti3O12 thin films prepared by metal–organic decomposition. Thin Solid Films 422, 230–234 (2002)

  23. 23.

    B. Frit, J.P. Mercurio, The crystal chemistry and dielectric properties of the Aurivillius family of complex bismuth oxides with perovskite-like layered structures. J. Alloy. Compd. 188, 27–35 (1992)

  24. 24.

    R.A. Armstrong, R.E. Newnhamm, Bismuth titanate solid solutions. Mater. Res. Bull. 7, 1025–1034 (1972)

  25. 25.

    T. Sivakumar, M. Itoh, Ferroelectric phase transitions in new Aurivillius oxides: Bi2+2xSr1−2xNb2−xScxO9. J. Mater. Chem. 21, 10865–10870 (2011)

  26. 26.

    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976)

  27. 27.

    Wu Yun, Guozhong Cao, Influences of vanadium doping on ferroelectric properties of strontium bismuth niobates. J. Mater. Sci. Lett. 19, 267–269 (2000)

  28. 28.

    R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925–946 (1969)

  29. 29.

    J. Sameer, P. Ganguly, A.K. Jha. Synthesis and characterization of vanadium doped SrBi2Nb2O9 ferroelectric ceramics. IEEE International symposium on the applications of ferroelectrics 1, pp. 1–4 2008

  30. 30.

    Y. Wu, G. Cao, Enhanced ferroelectric properties and lowered processing temperatures of strontium bismuth niobates with vanadium doping. Appl. Phys. Lett. 75, 2650–2652 (1999)

  31. 31.

    B.H. Venkataraman, K.B.R. Varma, Microstructural, dielectric, impedance and electric modulus studies on vanadium—doped and pure strontium bismuth niobate (SrBi2Nb2O9) ceramics. J. Mater. Sci. Mater. Electron. 16, 335–344 (2005)

  32. 32.

    C. Karthik, K.B.R. Varma, Influence of vanadium doping on the processing temperature and dielectric properties of barium bismuth niobate ceramics. Mater. Sci. Eng. B 129, 245–250 (2006)

  33. 33.

    E. Wu, POWDMULT, an interactive powder diffraction data interpretation and indexing program version 2.1 (Flinders University of South Australia, Bradford Park)

  34. 34.

    S. Sánchez-Ramos, A. Doménech-Carbó, J.V. Gimeno-Adelantado, J. Peris-Vicente, Analytical and mineralogical studies of ore and impurities from a chromite mineral using X-ray analysis, electrochemical and microscopy techniques. Talanta 74, 1592–1597 (2008)

  35. 35.

    Chuqiao Zhu, Yaxue Lin, Guiyin Fang, Preparation and thermal properties of micro encapsulated stearyl alcohol with silicon dioxide shell as thermal energy storage materials. Appl. Therm. Eng. 169, 114943 (2020)

  36. 36.

    P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, Structural, dielectric, impedance and modulus spectroscopy of Bi2NdTiVO9 ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 28, 17344–17353 (2017)

  37. 37.

    M. Faraday, Experimental researches in electricity, fourteenth series. Philos. Trans. 128(179), 265 (1837)

  38. 38.

    L.L. Hench, J.K. West, The sol-gel process. Chem. Rev. 90, 33–72 (1990)

  39. 39.

    D. Damjanovic, Materials for high temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 3, 469–473 (1998)

  40. 40.

    C.G. Koop, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequency. Phys. Rev. 83, 121–124 (1951)

  41. 41.

    R.P. Pawar, V. Puri, Structural, electrical and dielectric properties of (Sr1−xCax)MnO3 (0 ≤ x ≤ 1.0) ceramics. Ceram. Int. 40, 10423–10430 (2014)

  42. 42.

    S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011)

  43. 43.

    T. Acharya, R.N.P. Choudhary, Development of ilmenite-type electronic material CdTiO3 for devices. IEEE Trans. Dielectr. Electr. Insul. 22, 3521–3528 (2015)

  44. 44.

    P. Ganguli, S. Devi, A.K. Jha, K.L. Deori, Dielectric and pyroelectric studies of tungsten-bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Ferroelectrics 381, 111–119 (2009)

  45. 45.

    T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)

  46. 46.

    A. Rahman, A.K.M.A. Hossain, Relaxation mechanism of (x)Mn0.45Ni0.05Zn0.50Fe2O4 + (1 − x)BaZr0.52Ti0.48O3 multiferroic materials. Phys. Scr. 89, 115811 (2014)

  47. 47.

    J. Plocharski, W. Wieczoreck, Impedance spectroscopy and phase structure of PEO NaI complexes. Solid State Ionics 28, 1014–1017 (1998)

  48. 48.

    P. Thongbai, S. Tangwancharoen, T. Yamwong, S. Maensiri, Dielectric relaxation and dielectric response mechanism in (Li, Ti)-doped NiO ceramics. J. Phys. Condens. Matter 20, 395227 (2008)

  49. 49.

    A.G. Monteduro, Z. Ameer, M. Martino, A.P. Caricato, V. Tasco, I.C. Lekshmi, R. Rinaldi et al., Dielectric investigation of high-k yttrium copper titanate thin films. J. Mater. Chem. C 4, 1080–1087 (2016)

  50. 50.

    A. Dittl, S. Krohns, J. Sebald, F. Schrettle, M. Hemmida, H.-A. Krug von Nidda, S. Riegg, A. Reller, S.G. Ebbinghaus, A. Loidl, On the magnetism of Ln2/3 Cu3Ti4O12 (Ln = lanthanide). Eur. Phys. J. B 79, 391–400 (2011)

  51. 51.

    D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989)

  52. 52.

    P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, TbFeO3 Ceramic: an exciting colossal dielectric with ferroelectric properties. Physica Status Solidi B (2019). https://doi.org/10.1002/pssb.201900236

  53. 53.

    M.A. Ahmed, S.F. Mansour, M.A. Abdo, Electrical properties of Cu substituted Co nano ferrite. Phys. Scr. 86, 025705 (2012)

  54. 54.

    P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, Structural and electrical characteristics of Bi2YTiVO9 ceramic. Mater. Res. Express. 5, 045905 (2018)

  55. 55.

    J.R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ion. 13, 147–149 (1984)

  56. 56.

    A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 34, 1301–1310 (1999)

  57. 57.

    I.M. Hodge, M.D. Ingram, A.R. West, A new method for analysing the AC behaviour of polycrystalline solid electrolytes. J. Electroanal. Chem. 58, 429–432 (1975)

  58. 58.

    B. Behera, P. Nayak, R.N.P. Choudhary, Impedance spectroscopy study of NaBa2V5O15 ceramic. J. Alloys Compd. 436, 226–232 (2007)

  59. 59.

    K. Parida, S.K. Dehury, R.N.P. Choudhary, Structural, electrical and magneto-electric characteristics of BiMgFeCeO6 ceramics. Phys. Lett. A 380, 4083–4091 (2016)

  60. 60.

    P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, Structural, dielectric and electrical characteristics of lead-free ferroelectric ceramic: Bi2SmTiVO9. J. Electron. Mater. 47, 5458–5467 (2018)

  61. 61.

    L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Mater. Chem. Phys. 139, 844–850 (2013)

  62. 62.

    Y. Huang, L. Liu, D. Shi, S.S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadid, Giant dielectric permittivity and non-linear electrical behavior in CaCu3Ti4O12 varistors from the molten-salt synthesized powder. Ceram. Int. 39, 6063–6068 (2013)

  63. 63.

    S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, Dielectric and impedance spectroscopy of Ni doped BiFeO3-BaTiO3 electronic system. J. Mater. Sci. Mater. Electron. 27, 10099–10105 (2016)

  64. 64.

    S. Halder, K. Parida, S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, Dielectric and impedance properties of Bi (Zn2/3V1/3)O3 electronic material. Phys. Lett. A 382, 716–722 (2018)

  65. 65.

    P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, S. Das, Structural and electrical properties of Bi3TiVO9 ferroelectric ceramics. J. Alloys Compd. 731, 1171–1180 (2018)

  66. 66.

    V. Purohit, R. Padhee, R.N.P. Choudhury, Structural and electrical properties of Bi(Mg0.5Ti0.5)O3 ceramic. J. Mater. Sci. Mater. Electron. 29, 5224–5232 (2018)

  67. 67.

    Zhen Zhang, Haixue Yan, Xianlin Dong, Yongling Wang, Preparation and electrical properties of bismuth layer-structured ceramic Bi3NbTiO9 solid solution. Mater. Res. Bull. 38, 241–248 (2003)

  68. 68.

    Sunil Kumar, K.B.R. Varma, Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. J. Phys. D Appl. Phys. 42, 075405 (2009)

  69. 69.

    Zhiyong Zhou, Yuchen Li, Lihui Yang, Xianlin Dong, Yongling Wang, Microstructure and electrical properties of textured bi-layered Bi3NbTiO9 piezoceramics. Ferroelectrics 363, 127–133 (2008)

Download references

Acknowledgements

The authors would like to extend their gratitude and sincere thanks to Dr. Truptimayee Acharya, Indian Institute of Technology, Bhubaneswar for providing the experimental facility.

Author information

Correspondence to Prabhasini Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Meher, L.K. & Choudhary, R.N.P. Structural, dielectric, impedance and modulus spectroscopy of BiLa2TiVO9 ceramic. Appl. Phys. A 126, 187 (2020). https://doi.org/10.1007/s00339-020-3341-y

Download citation

Keywords

  • X-ray diffraction
  • Complex impedance spectroscopy
  • Activation energy
  • Hysteresis loop
  • Non-Debye