Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Low-frequency dielectric processes in deformed helix ferroelectric liquid crystals

  • 24 Accesses


A low-frequency dielectric relaxation mode in deformed helix ferroelectric liquid crystal (DHFLC) has been observed at the interface of strongly rubbed substrates and DHFLC material which may find applications in low power consumption FLC devices. The surface-induced dielectric relaxation process at the interface of DHFLC and substrate is called the partially unwound helical mode (p-UHM) due to the unwinding of the helical structure at this interface. After investigation of the material under various parameters such as temperature, variation of the amplitude of probing ac voltage and dc bias voltage, the relaxation frequency of p-UHM is found to be shifted towards Goldstone mode and merged with it. The relaxation frequency of Goldstone mode is found to decrease, whereas the relaxation frequency of p-UHM process increases with the increase in temperature of DHFLC. Finally, both the modes merge and the resultant relaxation frequency is found to be lower than Goldstone mode in SmC* phase. It seems that phason mode and partial helical unwinding mode are coupled together due to dipole moment that is resulting in a new relaxation frequency. p-UHM process is significant for low-power displays and non-displays applications like a part of sensor where weak electric signal is required to be realized without pre-amplification.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    L.A. Beresnev, V.G. Chingrinov, D.I. Dergachev, E.P. Poshidaev, J. Funfschilling, M. Schadt, Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals. Liq. Cryst. 5, 1171–1177 (1989)

  2. 2.

    F.L. Vladimirov, A.N. Chaika, N. Collings, Spatial light modulator based on hydrogenated amorphous silcon/deformed-helix ferroelectric liquid crystal structure: influence of dielectric mirror. Ferroelectrics 246, 1175 (2000)

  3. 3.

    A.D. Kiselev, E.P. Pozhidaev, V.G. Chigrinov, H.S. Kwok, Polarization-grating approach to deformed helix ferroelectric liquid crystals with subwavelength pitch. Phys. Rev. E 83(3), 031703 (2011)

  4. 4.

    J. Prakash, A. Choudhary, D.S. Mehta, A.M. Biradar, Effect of surface anchoring on optical bistability in deformed helix ferroelectric liquid crystals. Mol. Cryst. Liq. Cryst. 511, 1881658 (2009)

  5. 5.

    S. Kaur, A.K. Thakur, R. Chauhan, S.S. Bawa, A.M. Biradar, Bistability in deformed helix ferroelectric liquid crystal. J. Appl. Phys. 96, 2547 (2004)

  6. 6.

    A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, W. Haase, Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle–ferroelectric liquid crystal nanocomposites: influence of chain length and tethered liquid crystal functional groups. Soft Matter 8, 8722 (2012)

  7. 7.

    A. Choudhary, G. Singh, A.M. Biradar, Advances in gold nanoparticle–liquid crystal composites. Nanoscale 6, 7743 (2014)

  8. 8.

    N. Sood, S. Khosla, D. Singh, S.S. Bawa, Dielectric investigation of pure carbon nanotube-doped deformed helix ferroelectric liquid crystals. Liq. Cryst. 39(10), 1169 (2012)

  9. 9.

    B.K. Urbanc, B. Zeks, Phase-excitation spectrum of ferroelectric liquid crystals in an external static electric field. Phys. Rev. E 52(4), 3892 (1995)

  10. 10.

    J.K. Song, U. Manna, J.K. Vij, Mechanism of field-induced unwinding of SmC* helix and bias field dependencies of dielectric permittivity and effective polarization. Euro Phys. Lett. 82, 26003 (2008)

  11. 11.

    L.A. Beresnev, M. Pfeiffer, S.A. Pikin, W. Haase, L.A. Blinov, Domain mode—a novel relaxation process in ferroelectric liquid crystals. Ferroelectrics 132, 99 (1992)

  12. 12.

    R.B. Meyer, Ferroelectric liquid crystals; a review. Mol. Cryst. Liq. Cryst. 40, 33 (1977)

  13. 13.

    R.B. Meyer, Effects of electric and magnetic fields on the structure of cholesteric liquid crystals. Appl. Phys. Lett. 12, 281 (1968)

  14. 14.

    A.D. Rey, Flow alignment in the helix uncoiling of sheared cholesteric liquid crystals. Phys. Rev. E 53, 4198 (1996)

  15. 15.

    S.I. Suwa, H. Hoshi, Y. Takanishi, K. Ishikawa, H. Takezoe, B. Zeks, Helix unwinding process in a short-pitch ferroelectric liquid crystal mixture studied by conoscopy. Jpn. J. Appl. Phys. 42, 1335 (2003)

  16. 16.

    S.S. Bawa, A.M. Biradar, S. Chandra, Dynamics of helix winding, unwinding and switching of ferroelectric liquid crystals. Jpn. J. Appl. Phys. 26(1), 189 (1987)

  17. 17.

    E. Pozhidaev, V. Chigrinov, A. Murauski, V. Molkin, D. Tao, H.S. Kwok, V-shaped electro-optical mode based on deformed-helix ferroelectric liquid crystal with subwavelength pitch. J. SID 20(5), 273 (2012)

  18. 18.

    S. Uto, A helix unwinding process in ferroelectric liquid crystals with fixed boundaries. J. Appl. Phys. 97(1), 014107 (2005)

  19. 19.

    A.V. Kaznacheev, E.P. Pozhidaev, Effect of boundary surfaces on the effective dielectric susceptibility of the helical structure of a ferroelectric liquid crystal. J. Exp. Theor. Phys. 121, 355–361 (2015)

  20. 20.

    V.V. Kesaev, A.D. Kiselev, E.P. Pozhidaev, Modulation of unpolarized light in planar-aligned subwavelength-pitch deformed-helix ferroelectric liquid crystals. Phys. Rev. E 95, 032705 (2017)

  21. 21.

    S.P. Kotova, S.A. Samagin, E.P. Pozhidaev, A.D. Kiselev, Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals. Phys. Rev. E 9, 062502 (2015)

  22. 22.

    Z. Brodzeli, L. Silvestri, A. Michie, Q. Guo, E.P. Pozhidaev, V. Chigrinov, F. Ladouceur, Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications. Liq. Cryst. 40(10), 1427 (2013)

  23. 23.

    A. Mukherjee, M. Rahman, S.S. Bhattacharyya, A. Yoshizawa, B.K. Chaudhuri, Dielectric permittivity-voltage hysteresis in deformed helix ferroelectric liquid crystal. Chem. Phys. Lett. 457, 315 (2008)

  24. 24.

    A. Bubnov, C. Vacek, M. Czerwiński, T. Vojtylová, W. Piecek, V. Hamplová, Design of polar self-assembling lactic acid derivatives possessing submicrometre helical pitch. Beilstein J. Nanotechnol. 9, 333 (2018)

  25. 25.

    L. Silvestri, H. Srinivas, F. Ladoveeur, Effective dielectric tensor of deformed helix ferroelectric liquid crystals with subwavelength pitch and large tilt angle. Phys. Rev. E 98(5), 052707 (2018)

  26. 26.

    J. Fitas, M. Marzec, K. Kurp, M. Żurowska, M. Tykarska, A. Bubnov, Electro-optic and dielectric properties of new binary ferroelectric and antiferroelectric liquid crystalline mixtures. Liq. Cryst. 44(9), 1468 (2017)

  27. 27.

    A. Choudhary, A. Bawa, Rajesh, S.P. Singh, A.M. Biradar, Dielectric relaxation process of a partially unwound helical structure in ferroelectric liquid crystals. Phys. Rev. E 95, 062702 (2017)

  28. 28.

    A. Bawa, L.K. Gangwar, A. Dhingra, A. Choudhary, Rajesh, S.P. Singh, W. Haase, A.M. Biradar, Polarisation-dependent dielectric processes in ferroelectric liquid crystals. Liq. Cryst. 46(2), 166 (2018)

  29. 29.

    J.M. Geary, J.W. Goodby, A.R. Kmetz, J.S. Patel, The mechanism of polymer alignment of liquid crystal materials. J. Appl. Phys. 62(10), 4100 (1987)

  30. 30.

    S. Ishihara, H. Wakemoto, K. Nakazima, Y. Matsuo, The effect of rubbed polymer films on liquid crystal alignment. Liq. Cryst. 4(6), 669 (1989)

  31. 31.

    W. Zheng, C.H. Lu, Y.C. Ye, Effects of mechanical rubbing on surface tension of polyimide thin films. Jpn. J. Appl. Phys. 47, 1651 (2008)

  32. 32.

    E.P. Haridas, A.M. Biradar, G.K. Chadha, Effect of surface anchoring on electro-optical characteristics of high tilt angle FLC materials. Ferroelectrics 211(1), 9 (1998)

  33. 33.

    F.V. Podgornov, A.M. Suvorova, A.V. Lapanik, W. Haase, Electrooptic and dielectric properties of ferroelectric liquid crystal/single walled carbon nanotubes dispersions confined in thin cells. Chem. Phys. Lett. 479, 206 (2009)

  34. 34.

    K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941)

  35. 35.

    W. Haase, S. Wróbel (eds.), Relaxation phenomena: liquid crystals, magnetic systems, polymers, high-Tc superconductors, metallic glasses (Springer, Berlin, 2003)

  36. 36.

    A. Levstik, T. Carlsson, C. Filipic, I. Levstik, B. Zeks, Goldstone mode and soft mode at the smectic—a smectic-C* phase transition studied by dielectric relaxation. Phys. Rev. A 35, 3527 (1987)

  37. 37.

    T. Carlsson, B. Žekš, C. Filipič, A. Levstik, Theoretical model of the frequency and temperature dependence of the complex dielectric constant of ferroelectric liquid crystals near the smectic-C*-smectic—a phase transition. Phys. Rev. A 42, 877 (1990)

  38. 38.

    A.M. Biradar, S. Wrobel, W. Haase, Dielectric relaxation in the smectic-A* and smectic-C* phases of ferroelectric liquid crystal. Phys. Rev. A 39, 2693 (1989)

  39. 39.

    A. Kumar, J. Prakash, A. Choudhary, A.M. Biradar, Dielectric and electro-optical studies of glycerol/ferroelectric liquid crystal mixture at room temperature. J. Appl. Phys. 105, 124101 (2009)

  40. 40.

    T. Joshi, A. Kumar, J. Prakash, A.M. Biradar, Low frequency dielectric relaxations of gold nanoparticles/ferroelectric liquid crystal composites. Liq. Cryst. 37(11), 1433 (2010)

  41. 41.

    L.K. Gangwar, A. Bawa, A. Choudhary, S.P. Singh, Rajesh, A.M. Biradar, Collective dielectric processes at the transition temperature of the Sm-C* and Sm-A* phase in a ferroelectric liquid crystal. Phys. Rev. E 97, 062707 (2018)

  42. 42.

    A.M. Biradar, S.S. Bawa, W. Haase, Goldstone mode behaviour in deformed helix ferroelectric liquid crystal materials. Ferroelectrics 256, 201 (2001)

  43. 43.

    P.G. de Gennes, Calcul de la distorsion d'une structure cholesterique par un champ magnetique. Solid State Commun. 6(3), 163 (1968)

  44. 44.

    Z.H. Wang, Z.M. Sun, D. Feng, Effects of high-frequency a.c. electric field on the helical structure in a ferroelectric liquid crystal. Europhys. Lett. 14(8), 785 (1991)

  45. 45.

    B.S. Srikanta, N.V. Madhusudana, Dielectric relaxation studies on two systems exhibiting the induced smectic A phase. Mol. Cryst. Liq. Cryst. 108(1–2), 39 (1984)

Download references


We sincerely thank the Director, Dr. D. K. Aswal, National Physical Laboratory, New Delhi for his continuous encouragement in this work. We would like to thank the Department of Science and Technology, New Delhi, India for financial support through Project Science and Engineering Research Board Grant GAP-150632 at NPL, New Delhi, India. We (A.M.B. and A.B.) are thankful to Council of Scientific and Industrial Research (CSIR, India) (21/(0986)/13-EMR-II) for the financial assistance under an Emeritus Scheme.

Author information

Correspondence to Amit Choudhary or Ashok M. Biradar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bawa, A., Choudhary, A., Thakur, A.K. et al. Low-frequency dielectric processes in deformed helix ferroelectric liquid crystals. Appl. Phys. A 126, 171 (2020). https://doi.org/10.1007/s00339-020-3340-z

Download citation


  • Deformed helix ferroelectric liquid crystal
  • Dielectric spectroscopy
  • Surface interface