Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Design and fabrication of PDMS microfluidics device for rapid and label-free DNA detection

Abstract

Microfluidics explores the manipulation of fluid in small volume, a multidisciplinary field is imperative for DNA extraction. This study offers a simple yet substantial methodology for the fabrication of microfluidics structure-based polydimethylsiloxane (PDMS) biopolymer on a glass substrate with SU-8 photoresist for label-free detection of pathogenic genomic DNA. Two microfluidics designs for DNA detection were based on AutoCAD software, both contain two inlets and one outlet, with dimensions of 28 mm wide, and 18 mm long, and total surface area of 504 mm2. The designs were patterned in such particular sizes and dimensions to test fluid delivery and enhancement in biochemical processes in DNA extraction, while maintaining economical values as a disposable chip. Both microfluidics devices showed no leakage during fluid delivery, have heights of 97.97 and 103.44 μm, and surface roughness of 0.15 and 0.07 μm, respectively. DNA extraction from pathogenic fungus Ganoderma boninense was run on PDMS microfluidic device and UV–Vis analysis confirmed successful extraction with peaks found at 260–280 nm. Current–voltage (IV) measurement confirmed the accuracy of microfluidic device for the specific pathogen with both real and synthetic samples of G. boninense illustrating the similar graph values of only 0.000005 A difference at 1.0 V after hybridization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    S.C. Terry, J.H. Jerman, J.B. Angell, IEEE Trans. Electron Dev. 26, 1880 (1979)

  2. 2.

    A. Manz, N. Graber, H.M. Widmer, Sens. Actuators B Chem. 1(1–6), 244–248 (1990)

  3. 3.

    P.C.H. Li, D.J. Harrison, Anal. Chem. 69, 1564 (1997)

  4. 4.

    K. Fluri, G. Fitzpatrick, N. Chiem, D.J. Harrison, C. Tg, A.M. Centre, Anal. Chem. 68, 4285 (1996)

  5. 5.

    D. Harrison, P.G. Glavina, A. Manz, Sens. Actuators B Chem. 10, 107 (1993)

  6. 6.

    L.C. Waters, S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, J.M. Ramsey, Anal. Chem. 70, 158–162 (1998)

  7. 7.

    J. Khandurina, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey, Anal. Chem. 71, 1815 (2008)

  8. 8.

    Y. Shi, P.C. Simpson, J.R. Scherer, D. Wexler, C. Skibola, M.T. Smith, R.A. Mathies, Anal. Biochem. 71, 5354 (1999)

  9. 9.

    A.T. Woolley, D. Hadley, P. Landre, J. Andrew, R.A. Mathies, M.A. Northrup, Anal. Chem. 68, 4081 (1996)

  10. 10.

    M.A. Unger, H. Chou, T. Thorsen, A. Scherer, R. Stephen, M.A. Unger, H. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)

  11. 11.

    D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)

  12. 12.

    J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J. Schueller, G.M. Whitesides, Electrophoresis 21, 27 (2000)

  13. 13.

    A. Ayoib, U. Hashim, S.C.B.S.C.B. Gopinath, M.K.K. Md Arshad, Appl. Microbiol. Biotechnol. 101, 8077 (2017)

  14. 14.

    M. Lake, M. Lake, C. Narciso, K. Cowdrick, T. Storey, S. Zhang, J. Zartman, D. Hoelzle, Protoc. Exch. (2015). https://doi.org/10.1038/protex.2015.069

  15. 15.

    H. Jayamohan, H.J. Sant, B.K. Gale, in Microfluidic diagnostics. Methods, in molecular biology (methods and protocols), vol. 949, ed. by G. Jenkins, C. Mansfield (Humana Press, Totowa, NJ, 2013), pp. 305–334

  16. 16.

    A. Gokaltun, M.L. Yarmush, A. Asatekin, O.B. Usta, Technology 5, 1 (2017)

  17. 17.

    M.H. Mirnomeni, M.S. Sajjadi, S. Sisakhtnezhad, F. Doranegard, J. Biol. Sci. 10, 261 (2010)

  18. 18.

    S.C. Tan, B.C. Yiap, J. Biomed. Biotechnol. 2009, 10 (2009)

  19. 19.

    C.T. Yavuz, A. Prakash, J.T. Mayo, V.L. Colvin, Chem. Eng. Sci. 64, 2510 (2009)

  20. 20.

    V. Perumal, U. Hashim, J. Appl. Biomed. 12, 1 (2014)

  21. 21.

    L.R. Volpatti, A.K. Yetisen, Trends Biotechnol. 32, 347 (2014)

  22. 22.

    J.J. Doyle, J.L. Doyle, Focus (Madison). 12, 13–15 (1990)

  23. 23.

    G. Samla, K.B. Gan, S.-M. Then, Microsyst. Technol. 23, 4435 (2017)

  24. 24.

    J.H. Cota-Sánchez, K. Remarchuk, K. Ubayasena, Plant Mol. Biol. Rep. 24, 161 (2006)

  25. 25.

    C.G. Athanasio, J.K. Chipman, M.R. Viant, L. Mirbahai, PeerJ 4, e2004 (2016)

Download references

Acknowledgements

Author Adilah Ayoib gratefully acknowledges the support from the Director of Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), the staff members and colleagues for valuable discussion and helpful comments. This work is also supported by NanoMalaysia Institute for Innovative Technology (NanoMite) Grant (9012 00006) program funded by Long Term Research Grant (LRGS), Ministry of Education, Malaysia. The views expressed in this publication are the authors’ own interpretation based on the data collected and do not reflect in any way the views of the funding agencies.

Author information

Correspondence to Uda Hashim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayoib, A., Hashim, U., Gopinath, S.C.B. et al. Design and fabrication of PDMS microfluidics device for rapid and label-free DNA detection. Appl. Phys. A 126, 193 (2020). https://doi.org/10.1007/s00339-020-3337-7

Download citation

Keywords

  • Microfluidics
  • Biosensor
  • Lab-on-a-chip
  • μTAS
  • DNA extraction
  • Ganoderma boninense