Advertisement

Applied Physics A

, 126:92 | Cite as

Strain-tunable band alignment of blue phosphorus–WX2 (X = S/Se/Te) vertical heterostructures: from first-principles study

  • Honglin LiEmail author
  • Yuting CuiEmail author
  • Wanjun Li
  • Lijuan Ye
  • Lin Mu
Article
  • 3 Downloads

Abstract

In the scope of two-dimensional (2D) material study, blue phosphorus (BP) is a new graphene-like layered structure that has been successfully synthesized in the experiment after it was theoretically proved to be thermostable. These 2D structured functional materials have great potential in the next-generation nanoscale electronic devices for their unique features. Here, we composite BP and monolayer WX2 (X = S/Se/Te) based on van der Waals force (vdW) interaction to obtain well-defined type-II band alignment heterostructures. A systematic theoretic study was conducted to explore the interlayer coupling effects and the bands’ re-alignment of the BP–WX2 heterostructure after the strain was applied. Nowadays, many researches have proved that 2D materials can be used to degrade pollutants or used as a potential photovoltaic cell material to obtain high performance. We here twist BP and WX2 (X = S/Se/Te) into different angles to lay a theoretical framework on the band alignment and carriers’ separation. It reveals that the electronic properties of freestanding BP and WX2 can be roughly preserved in the corresponding heterostructures. Upon applying strain, band alignment exhibits significant adjustability through varying external strain. The heterostructures are type-II in a certain strain range, within which the carriers can be effectively separated spatially. These heterostructures undergo a transition from semiconductor to metal when a certain strain is imposed. This work not only provides a deep insight into the construction of heterostructures, but presents a new possibility for strain engineering that is both flexible and feasible and can be used for diverse applications.

Keywords

Blue phosphorus Heterojunction First principles 

Notes

Acknowledgements

The authors acknowledge the financial support by the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN201800501, KJQN201900542, KJ1703042), the Program for Leading Talents in Science and Technology Innovation of Chongqing City (No. cstc2014kjcxljrc0023), the Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0237), the National Natural Science Foundation of China (No. 11947105, 11904041), and Chongqing Normal University Fund Project (No. 17XLB012).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    X. Jiang, X. Zhang, F. Xiong, Z. Hua, Z. Wang, S. Yang, Room temperature ferromagnetism in transition metal-doped black phosphorous. Appl. Phys. Lett. 112, 192105 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    X. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.F. Yu, From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 25, 6996–7002 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Guan, Z. Zhu, D. Tománek, Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113, 046804 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    B. You, X. Wang, W. Mi, Prediction of spin–orbital coupling effects on the electronic structure of two dimensional van der Waals heterostructures. Phys. Chem. Chem. Phys. 17, 31253–31259 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Tahir, U. Schwingenschlögl, Valley polarized quantum Hall effect and topological insulator phase transitions in silicene. Sci. Rep. 3, 1075 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    B. You, X. Wang, Z. Zheng, W. Mi, Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. Phys. Chem. Chem. Phys. 18, 7381–7388 (2016)CrossRefGoogle Scholar
  10. 10.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Q. Gao, X. Li, M. Li, T. Wang, X. Huang, Q. Zhang, J. Li, Y. Jia, C. Xia, Realization of larger band gap opening of graphene and type-I band alignment with BN intercalation layer in graphene/MX2 heterojunctions. Phys. Rev. B 100, 115439 (2019)ADSCrossRefGoogle Scholar
  12. 12.
    C. Xia, J. Du, M. Li, X. Li, X. Zhao, T. Wang, J. Li, Effects of electric field on the electronic structures of broken-gap phosphorene/SnX2 (X = S, Se) van der Waals heterojunctions. Phys. Rev. Appl. 10, 054064 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Langer, C. Delerue, M. Lannoo, H. Heinrich, Transition-metal impurities in semiconductors and heterojunction band lineups. Phys. Rev. B 38, 7723 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    A.T. Hanbicki, H.-J. Chuang, M.R. Rosenberger, C.S. Hellberg, S.V. Sivaram, K.M. McCreary, I.I. Mazin, B.T. Jonker, Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 12, 4719–4726 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Basu, N. Garg, A.K. Ganguli, A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis. J. Mater. Chem. A 2, 7517–7525 (2014)CrossRefGoogle Scholar
  17. 17.
    L.-C. Tien, J.-L. Shih, Type-II α-In2S3/In2O3 nanowire heterostructures: evidence of enhanced photo-induced charge separation efficiency. RSC Adv. 6, 12561–12570 (2016)CrossRefGoogle Scholar
  18. 18.
    N. Song, Y. Wang, S. Ding, Y. Yang, J. Zhang, B. Xu, L. Yi, Y. Jia, The hydrogen storage behavior of Li-decorated monolayer WS2: a first-principles study. Vacuum 117, 63–67 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Yu, S.-Y. Huang, Y. Li, S.N. Steinmann, W. Yang, L. Cao, Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.S. Kang, J. Baik, H.J. Shin, Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 84, 045409 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    C. Ataca, H. Sahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Larentis, B. Fallahazad, E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 101, 223104 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    A. Samad, A. Shafique, Y.-H. Shin, Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2. Nanotechnology 28, 175401 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    A. Samad, M. Noor-A-Alam, Y.-H. Shin, First principles study of a SnS2/graphene heterostructure: a promising anode material for rechargeable Na ion batteries. J. Mater. Chem. A 4, 14316–14323 (2016)CrossRefGoogle Scholar
  28. 28.
    B. Modak, S.K. Ghosh, Enhancement of visible light photocatalytic activity of SrTiO3: a hybrid density functional study. J. Phys. Chem. C 119, 23503–23514 (2015)CrossRefGoogle Scholar
  29. 29.
    T. Jing, Y. Dai, W. Wei, X. Ma, B. Huang, Near-infrared photocatalytic activity induced by intrinsic defects in Bi2MO6 (M= W, Mo). Phys. Chem. Chem. Phys. 16, 18596–18604 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Zhang, X. Liu, C. Liu, S. Luo, L. Wang, T. Cai, Y. Zeng, J. Yuan, W. Dong, Y. Pei, MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12, 751–758 (2017)CrossRefGoogle Scholar
  31. 31.
    J. Zhu, S. Xu, J. Ning, D. Wang, J. Zhang, Y. Hao, Gate-Tunable electronic structure of black phosphorus/HfS2 P-N van der Waals heterostructure with uniformly anisotropic band dispersion. J. Phys. Chem. C 121, 24845–24852 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Ren, J. Yu, W. Tang, A two-dimensional vertical van der Waals heterostructure based on g-GaN and Mg(OH)2 used as a promising photocatalyst for water splitting: a first-principles calculation. J. Appl. Phys. 126, 065701 (2019)ADSCrossRefGoogle Scholar
  33. 33.
    K. Ren, C. Ren, Y. Luo, Y. Xu, J. Yu, W. Tang, M. Sun, Using van der Waals heterostructures based on two-dimensional blue phosphorus and XC (X=Ge, Si) for water-splitting photocatalysis: a first-principles study. Phys. Chem. Chem. Phys. 21, 9949–9956 (2019)CrossRefGoogle Scholar
  34. 34.
    J. Xiao, M. Long, C.-S. Deng, J. He, L.-L. Cui, H. Xu, Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: a first-principles study. J. Phys. Chem. C 120, 4638–4646 (2016)CrossRefGoogle Scholar
  35. 35.
    L. Huang, J. Li, Tunable electronic structure of black phosphorus/blue phosphorus van der Waals pn heterostructure. Appl. Phys. Lett. 108, 083101 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    J. Yan, P. Li, Y. Ji, H. Bian, Y. Li, S.F. Liu, Earth-abundant elements doping for robust and stable solar-driven water splitting by FeOOH. J. Mater. Chem. A 5, 21478–21485 (2017)CrossRefGoogle Scholar
  37. 37.
    H.A. Abdulhussein, P. Ferrari, J. Vanbuel, C.J. Heard, A. Fielicke, P. Lievens, E. Janssens, R.L. Johnston, Altering CO binding on Gold Cluster Cations by Pd-doping. Nanoscale 11, 16130–16141 (2019)CrossRefGoogle Scholar
  38. 38.
    Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)CrossRefGoogle Scholar
  39. 39.
    X. Li, L. Zhang, X. Zang, X. Li, H. Zhu, Photo-promoted platinum nanoparticles decorated MoS2@graphene woven fabric catalyst for efficient hydrogen generation. ACS Appl. Mater. Interfaces 8, 10866–10873 (2016)CrossRefGoogle Scholar
  40. 40.
    W. Zan, W. Geng, H. Liu, X. Yao, Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures. Phys. Chem. Chem. Phys. 18, 3159–3164 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringChongqing Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations