Advertisement

Applied Physics A

, 126:93 | Cite as

Experimental study of the diamagnetism and the ferromagnetism in MoS2 thin films

  • Asma Bouarissa
  • Abdelhamid LayadiEmail author
  • Hager Maghraoui-MeherziEmail author
Article
  • 16 Downloads

Abstract

A series of MoS2 films were prepared by the chemical bath deposition method at different temperatures (60–80 °C). The film thicknesses range from 0.988 up to 10.25 µm. The films are polycrystalline. Vibrating sample magnetometer (VSM) was used to study the magnetic properties of these MoS2 films. The experiments were done at room temperature with the magnetic field applied in the film plane. The magnetization curves indicate the coexistence of ferromagnetism and diamagnetism. The saturation and remnant magnetizations, the coercive and saturation fields as well as the diamagnetic susceptibility have been measured and are discussed as a function of the film thickness and the synthesis temperature. A change in the magnetic anisotropy is observed, and the magnetization easy axis direction switches from in-plane to out-of-plane as the thickness increases. The magnetic properties are correlated with the structural ones.

Keywords

MoS2 films Diamagnetism Ferromagnetism Hysteresis curves Magnetic anisotropy 

Notes

References

  1. 1.
    L Sun Y Liu P Wu W Zhou 2020 Mater. Chem. Phys. 239 122071CrossRefGoogle Scholar
  2. 2.
    Z Huang X Peng H Yang C He L Xue G Hao C Zhang W Liu X Qi J Zhong 2013 RSC Adv. 3 12939CrossRefGoogle Scholar
  3. 3.
    D Xiao G-B Liu W Feng X Xu W Yao 2012 Phys. Rev. Lett. 108 196802ADSCrossRefGoogle Scholar
  4. 4.
    K Kobayashi J Yamauchi 1995 Phys. Rev. B 51 17085ADSCrossRefGoogle Scholar
  5. 5.
    S Ahmad S Mulcherjee 2014 Graphene 3 52CrossRefGoogle Scholar
  6. 6.
    KF Mak C Lee J Hone J Shan TF Heinz 2010 Phys. Rev. Lett. 105 136805ADSCrossRefGoogle Scholar
  7. 7.
    A Macková P Malinsky A Jagerová J Luxa K Szökölové Z Sofer 2019 Surf. Interf. 17 100357CrossRefGoogle Scholar
  8. 8.
    K Kośmider J Fernández-Rossier 2013 Phys. Rev. B 87 075451ADSCrossRefGoogle Scholar
  9. 9.
    O Lopez-Sanchez D Lembke M Kayci A Radenovic A Kis 2013 Nat. Nanotechnol. 8 497ADSCrossRefGoogle Scholar
  10. 10.
    B Radisavljevic A Radenovic J Brivio V Giacometti A Kis 2011 Nat. Nanotechnol. 6 147ADSCrossRefGoogle Scholar
  11. 11.
    D Voiry M Salehi R Silva T Fujita MW Chen T Asefa VB Shenoy G Eda M Chhowalla 2013 Nanolett. 13 6222ADSCrossRefGoogle Scholar
  12. 12.
    DY Chung SK Park YH Chung SH Yu DH Lim N Jung HC Ham HY Park Y Piao SJ Yoo YE Sung 2014 Nanoscale 6 2131ADSCrossRefGoogle Scholar
  13. 13.
    E Guneri C Ulutas F Kiemizigul G Altindemir F Gode C Gumus 2010 Appl. Surf. Sci. 257 1189ADSCrossRefGoogle Scholar
  14. 14.
    P Roy SK Srivastava 2006 Thin Solid Films 496 293ADSCrossRefGoogle Scholar
  15. 15.
    KLP Thi LT Nguyen NH Ke DA Tuan TQA Le LVT Hung 2018 J. Electron. Mater. 47 6302ADSCrossRefGoogle Scholar
  16. 16.
    C Ataca H Şahin E Aktürk S Ciraci 2011 J. Phys. Chem. C 115 3934CrossRefGoogle Scholar
  17. 17.
    Z Guguchia A Kerelsky D Edelberg S Banerjee F Rohr von D Scullion M Augustin M Scully DA Rhodes Z Shermadini H Luetkens A Shengelaya C Baines E Morenzoni A Amato JC Hone R Khasanov SJL Billinge E Santos AN Pasupathy YJ Uemura 2018 Sci. Adv. 4 3672CrossRefGoogle Scholar
  18. 18.
    A Hannachi S Hammami N Raouafi H Maghraoui-Meherzi 2016 J. Alloys Compd. 663 507 515CrossRefGoogle Scholar
  19. 19.
    SV Kite PA Chate KM Garadkar DJ Sathe 2017 J. Mater Sci: Mater. Electron. 28 16148 16154Google Scholar
  20. 20.
    M Mebarki A Layadi MR Khelladi A Azizi N Tiercelin V Preobrazhensky P Pernod 2017 J. Mater. Sci. 52 8 4472 4482ADSCrossRefGoogle Scholar
  21. 21.
    S Tongay SS Varnoosfaderani BR Appleton Wu Junqiao AF Hebard 2012 Appl. Phy. Lett. 101 123105ADSCrossRefGoogle Scholar
  22. 22.
    A Li J Pan Z Yang L Zhou X Xiong F Ouyang 2018 J. Magn. Magn. Mater. 451 520ADSCrossRefGoogle Scholar
  23. 23.
    WS Yun JD Lee 2015 J. Phys. Chem. C 5 2822CrossRefGoogle Scholar
  24. 24.
    Y Li Z Zhou S Zhang Z Chen 2008 J. Am. Chem. Soc. 130 16739 16744CrossRefGoogle Scholar
  25. 25.
    C Ataca H Sahin E Akturk S Ciraci 2011 J. Phys. Chem. C 115 3934 3941CrossRefGoogle Scholar
  26. 26.
    TC Arnoldussen 1986 Proc IEEE 74 11 1526CrossRefGoogle Scholar
  27. 27.
    HS Jung WD Doyle S Matsunuma 2003 J. Appl. Phys. 93 6462ADSCrossRefGoogle Scholar
  28. 28.
    M Mebarki A Layadi L Kerkache N Tiercelin V Preobrazhensky P Pernod 2015 Appl. Phys. A 120 1 97 104ADSCrossRefGoogle Scholar
  29. 29.
    ZH Wang K Chen Y Zhou HZ Zeng 2005 Ultramicroscopy 105 343 346CrossRefGoogle Scholar
  30. 30.
    H Kockar T Meydan 2005 Eur. Phys. J. AP 30 3 185 188ADSCrossRefGoogle Scholar
  31. 31.
    H Kockar 2004 J. Supercond. Novel Mag. 17 4 531 536ADSCrossRefGoogle Scholar
  32. 32.
    H Kockar M Alper H Kuru T Meydan 2006 J. Mag. Magn. Mat. 304 2 e736 e738ADSCrossRefGoogle Scholar
  33. 33.
    H. Kockar, T. Meydan, Eur. Phys. J. B 26, 4, 435–438, (2002); J. Mag. Magn. Mat. 242–245, Part 1, 183–186, (2002); J. Mag. Magn. Mat. 242–245, Part 1, 187–190, (2002); Physica B 321, 124–128, (2002).Google Scholar
  34. 34.
    T Meydan H Kockar 2004 J. Optoelectron. Adv. Mater. 6 2 633 636Google Scholar
  35. 35.
    H Kockar T Meydan M Alper E Gungor 2006 Sens. Actuators A Phys. 129 188 191CrossRefGoogle Scholar
  36. 36.
    T Meydan H Kockar 2001 Eur. Phys. J. B 24 4 457 461ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculté Des Sciences de Tunis, Laboratoire de Chimie Analytique Et ElectrochimieUniversité de Tunis El ManarTunisTunisia
  2. 2.Département de PhysiqueUniversité Ferhat AbbasSétifAlgeria

Personalised recommendations