Advertisement

Microstructure and dielectric properties of LiTaO3 ceramics with MnO2 addition fabricated by hot-pressing sintering

  • 1 Accesses

Abstract

Lithium tantalite (LiTaO3) is an excellent single crystal, only a few studies focused on polycrystalline LiTaO3 ceramics, because it is difficult to sintering densification in fabrication process by common sintering. In this paper, LiTaO3 composite ceramics with added 3 wt% MnO2 were obtained by hot-pressing sintering at different temperatures from 1200 to 1350 °C. The sinterability, microstructure and dielectric properties of LiTaO3 ceramics fabricated at sintering temperatures were investigated. The relative density of the LiTaO3 ceramics was significantly enhanced as the sintering temperature increases first and then decreased. The LiTaO3 ceramics achieved the highest relative density (98.6%) and shown homogeneous microstructure when sintered at 1300 °C. The LiTaO3 and manganese oxide phases were observed in the MnO2/LiTaO3 ceramics fabricated at different sintering temperatures. The dielectric properties of MnO2/LiTaO3 ceramics were significantly influenced by the sintering temperatures. The study of dielectric properties revealed that the specimen had excellent dielectric properties when sintering temperature was 1300 °C and the dielectric constant was 78, as it tends to stay invariable at room temperature.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Y. Cho, K. Fujimoto, Y. Hiranage, Y. Wagatsuma, A. Onoe, K. Twrabe, K. Kitamura, Appl. Phys. Lett. 81, 4401 (2002)

  2. 2.

    K. Länge, B.E. Rapp, M. Rapp, Anal. Bioanal. Chem. 391, 1509 (2008)

  3. 3.

    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

  4. 4.

    X.X. Gong, M. Fang, G.T. Fei, M. Liu, F.D. Li, G.L. Shang, L.D. Zhang, RSC. Adv. 5, 31615 (2015)

  5. 5.

    J. Ravez, G.T. Joo, J. Senegas, P. Hagenmuller, Jpn. J. Appl. Phys. 24, 1000 (1985)

  6. 6.

    P. Reichenbach, T. Kämpfe, A. Thiessen, A. HaußMann, T. Woike, L.M. Eng, Appl. Phys. Lett. 105, 122906 (2014)

  7. 7.

    D. Ming, J.M. Reau, J. Rzvez, J. Gitate, P. Hagenmuller, J. Solid State Chem. 116, 185 (1995)

  8. 8.

    M. Gruber, I. Kraleva, P. Supancic, J. Bielen, D. Kiener, R. Bermejo, J. Eur. Ceram. Soc. 37, 4397 (2017)

  9. 9.

    L. Tian, V. Gopalan, L. Galambos, Appl. Phys. Lett. 85, 4445 (2004)

  10. 10.

    P. Bomlai, P. Sinsap, S. Muensit, S.J. Milne, J. Am. Ceram. Soc. 91, 624 (2008)

  11. 11.

    C.F. Chen, G.L. Brennecka, G. King, E.L. Tegtmeier, T. Holesinger, J. Ivy, P. Yang, J. Mater. Sci. Mater. Electron. 28, 3725 (2017)

  12. 12.

    A. Huanosta, A.R. West, J. Appl. Phys. 67, 5386 (1987)

  13. 13.

    J.J. Zhou, J.F. Li, K. Wang, X.W. Zhang, J. Mater. Sci. 46, 5111 (2011)

  14. 14.

    T. Yang, Y.G. Liu, L. Zhang, M.L. Hu, O. Yang, Z.H. Huang, M.H. Fang, Adv. Powder Technol. 25, 933 (2014)

  15. 15.

    C.F. Chen, A. Llobet, G.L. Brennecka, R.T. Forsyth, D.R. Guidry, P.A. Papin, R.J. McCabe, J. Am. Ceram. Soc. 95, 2820 (2012)

  16. 16.

    A. Huanosta, E. Alvarez, M.E. Villafuerte-Castrejón, A.R. West, Mater. Res. Bull. 39, 2229 (2004)

  17. 17.

    N. Bamba, T. Yokouchi, J. Takaoka, B. Elouadi, T. Fukami, Ferroelectrics 304, 135 (2004)

  18. 18.

    M. Tahiri, N. Masaif, A. Jennane, E.M. Lemdek, K. Benkhouja, E.M. Lotfi, Opt. Quantum Electron. 48, 278 (2016)

  19. 19.

    Y. Zhang, D. Jia, Y. Zhou, Q. Meng, Y. Liu, H. Ke, Ceram. Int. 35, 3475 (2009)

  20. 20.

    B.S. Chiou, T.Y. Lin, J.G. Duh, Mater. Chem. Phys. 28, 51 (1991)

  21. 21.

    P.J. Lin, L.A. Bursill, Micron 13, 275 (1982)

  22. 22.

    Y. Torii, T. Sekiya, T. Yamamoto, Mater. Res. Bull. 18, 1569 (1983)

  23. 23.

    A.K. Axelsson, Y. Pan, M. Valant, N.M. Alford, J. Am. Ceram. Soc. 93, 800 (2010)

  24. 24.

    Z. Zhao, Y. Dai, X. Li, Z. Zhao, X. Zhang, Appl. Phys. Lett. 108, 172906 (2016)

  25. 25.

    L. Chen, H. Fan, S. Zhang, J Am Ceram Soc. 100, 3568 (2017)

  26. 26.

    S. Shimada, K. Kodaira, T. Matsushita, J. Mater. Sci. 19, 1385 (1984)

  27. 27.

    W.W. Yang, Y.F. Zhang, Vacuum 173, 109130 (2020)

  28. 28.

    Y.F. Zhang, Y. Zhou, S.C. Jia, H.Y. Li, Q.C. Meng, Mater. Sci. Eng. A 448, 330 (2007)

  29. 29.

    Y.D. Hou, P.X. Lu, M.K. Zhu, X.M. Song, J.L. Tang, B. Wang, H. Yan, J. Am. Ceram. Soc. 87, 847 (2004)

  30. 30.

    Y. Yan, K.H. Cho, S. Priya, A. Feteira, J. Am. Ceram. Soc. 94, 3953 (2011)

  31. 31.

    M. Xiao, Y. Wei, P. Zhang, Mater. Chem. Phys. 225, 99 (2019)

  32. 32.

    X. Dai, A. Digiovanni, D. Viehland, J. Appl. Phys. 74, 3399 (1993)

  33. 33.

    A.P. Barranco, F.C. Piñar, P. Martínez, E.T. García, J. Eur. Ceram. Soc. 21, 523 (2001)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11604204, 51603120 and  51701114).

Author information

Correspondence to Youfeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Zhang, Y. Microstructure and dielectric properties of LiTaO3 ceramics with MnO2 addition fabricated by hot-pressing sintering. Appl. Phys. A 126, 104 (2020) doi:10.1007/s00339-020-3281-6

Download citation

Keywords

  • LiTaO3 ceramics
  • MnO2 addition
  • Hot pressing
  • Sintering temperature
  • Dielectric properties