Advertisement

Applied Physics A

, 126:94 | Cite as

Effect of volume fraction on magnetoelectric coupling effect of Co0.1Cu0.9Fe2O4/Ba0.8Sr0.2TiO3 composite liquid

  • Heng Wu
  • Ruicheng Xu
  • Xiaofeng Qin
  • Rongli GaoEmail author
  • Zhenhua Wang
  • Chunlin Fu
  • Wei Cai
  • Gang Chen
  • Xiaoling Deng
Article
  • 3 Downloads

Abstract

Co0.1Cu0.9Fe2O4 (CCFO) and Ba0.8Sr0.2TiO3 (BST) particles were respectively prepared by chemical coprecipitation and hydrothermal method, then CCFO/BST composite liquid was synthesized by distributing surface modified CCFO and Ba0.8Sr0.2TiO3 particles into insulating silicone oil. Effects of volume fraction (ϕv = 1%, 2%, 5% and 10%) on the microstructure, dielectric, ferroelectric and magnetoelectric coupling effect were comparatively investigated. XRD showed that the pure phase of CCFO and BST particles was successfully prepared. CCFO/BST composite particle shows ferromagnetic behavior due to the contribution of magnetic phase CCFO. The dielectric constant of CCFO/BST composite liquid is about 1/25 of the composite particles, and the dielectric constant value of the composite liquid decreases with increasing the volume fraction because the permittivity of silicone oil is far smaller than that of CCFO/BST composite particles. The relative change of dielectric constant of composite liquid under the action of external magnetic field is greater than that of composite particle due to its mobility of particles in liquid. The values of remnant polarization (Pr), coercive field (Ec) and leakage current of CCFO/BST composite liquid increase monotonically with increasing volume fraction, while excessive volume fraction may result in abnormal phenomenon because of the agglomeration of particles. Magnetic field-induced chain structure of the composite liquid has been observed under a light microscope at a magnification of 200. The maximal magnetoelectric (ME) coupling coefficient is about 89.78 V/(cm Oe), which is obtained in the CCFO/BST composite liquid when the volume fraction is 10%.

Keywords

Volume fraction Magnetoelectric coupling effect Composite liquid Chain structure Rotation 

Notes

Acknowledgements

The present work has been supported by the Chongqing Research Program of Basic Research and Frontier Technology (CSTC2018jcyjAX0416, CSTC2019jcyj-msxmX0071), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201901501), the Scientific and Technological Research Young Program of Chongqing Municipal Education Commission (KJQN201801509, KJQN20190150), the Program for Creative Research Groups in University of Chongqing (Grant No. CXQT19031), the Innovation Program for Chongqing's Overseas Returnees (cx2019159), the Excellent Talent Project in University of Chongqing (Grant No. 2017-35), the Science and Technology Innovation Project of Social Undertakings and Peoples Livelihood Guarantee of Chongqing (cstc2017shmsA90015), the Program for Innovation Teams in University of Chongqing, China (CXTDX201601032), the Leading Talents of Scientific and Technological Innovation in Chongqing (CSTCCXLJRC201919), the Program for Technical and Scientific Innovation Led by Academician of Chongqing, the Latter Foundation Project of Chongqing University of Science & Technology (CKHQZZ2008002), and the Scientific & Technological Achievements Foundation Project of Chongqing University of Science & Technology (CKKJCG2016328), the Postgraduate technology innovation project of Chongqing University of Science & Technology (YKJCX1820205, YKJCX1820214, YKJCX1920203), the 9th Chongqing KeHui graduate student innovation and entrepreneurship competition (09111260) and the student innovating projects of science of Chongqing (201811551014).

References

  1. 1.
    R.L. Gao, L. Bai, Z.Y. Xu, Q.M. Zhang, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, C.L. Fu, Adv. Electron Mater. 4, 1800030 (2018)CrossRefGoogle Scholar
  2. 2.
    R. Pandey, L.K. Pradhan, M. Kar, Struct. J. Phys. Chem. Solids 115, 42–48 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, C.L. Fu, X.L. Deng, W. Cai, ACS Appl. Electron Mater. 1(7), 1120 (2019)CrossRefGoogle Scholar
  4. 4.
    J.J.P. Peters, G. Apachitei, R. Beanland, M. Alexe, A.M. Sanchez, Nat. Commun. 7, 13484 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    R.L. Gao, X.F. Qin, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, W. Cai, J. Alloys Compds. 795, 501 (2019)CrossRefGoogle Scholar
  6. 6.
    S. Dong, J.M. Liu, S.W. Cheong, Z.F. Ren, Adv. Phys. 64(5), 519 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    R. L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L Fu, W. Cai, Compos Part B. 166, 204 (2019)Google Scholar
  8. 8.
    Y.Z. Xue, R.C. Xu, Z.H. Wang, R.L. Gao, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, J. Electron Mater. 48(8), 4806 (2019)ADSCrossRefGoogle Scholar
  9. 9.
    M.M. Vopson, Crit. Rev. Solid State Sci. 40(4), 223 (2015)CrossRefGoogle Scholar
  10. 10.
    J.M. Zhang, Y. Huang, L. Jin, F. Rosei, F. Vetrone, J.P. Claverie, P. Jerome, ACS Appl. Mater. Int. 9(9), 8142 (2017)CrossRefGoogle Scholar
  11. 11.
    J.F. Scott, Npg Asia Mater. 5, e72 (2013)CrossRefGoogle Scholar
  12. 12.
    R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Ceram. Int. 44, S84 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Chaudhuri, K. Mandal, J. Magn. Magn. Mater. 377, 441 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    B. Fu, R. Lu, K. Gao, Y.D. Yang, Y.P. Wang, Europhysics. Lett. 112(2), 27002 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    D.X. Zhou, G. Jian, Y.N. Zheng, S.P. Gong, F. Shi, Appl. Surf. Sci. 257(17), 7621 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    R.L. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, W. Cai, Mater. Chem. Phys. 232, 428 (2019)CrossRefGoogle Scholar
  17. 17.
    R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Nanoscale. 10(26), 11750 (2018)CrossRefGoogle Scholar
  18. 18.
    H. Wu, R.C. Xu, X.F. Qin, R.L. Gao, S.L. Zhang, C. Zhou, S.L. Xing, W. Cai, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02595-0
  19. 19.
    A. Faraz, A. Maqsood, N.M. Ahmad, Adv. Appl. Ceram. 111(4), 228 (2013)CrossRefGoogle Scholar
  20. 20.
    M.A. Ahmed, S.F. Mansour, M.A. Abdo, Phys. Scripta. 86(2), 025705 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    T. Woldu, B. Raneesh, B.K. Hazra, S. Srinath, N. Kalarikkal, J. Alloys. Compd. 691, 644 (2017)CrossRefGoogle Scholar
  22. 22.
    G.S. Luo, W.P. Zhou, L.I. Jian-De, G.W. Jiang, S.L. Tang, D.U. You-Wei, T. Nonferr, Metal. Soc. 25, 3678 (2015)Google Scholar
  23. 23.
    R.C. Xu, Z.H. Wang, R.L. Gao, S.L. Zhang, Q.W. Zhang, Z.D. Li, C.Y. Li, G.Chen, X.L. Deng, W. Cai, J. Mater. Sci. Mater. Electron. 29, 16226 (2018)Google Scholar
  24. 24.
    X.H. Zhang, J. Zhang, Z. K. Xie, L.X. Yuan, Z.X, Yue, L.T. Li, J. Am. Ceram. Soc. 98(4), 1245 (2015)CrossRefGoogle Scholar
  25. 25.
    A.R. Abraham, B. Raneesh, S. Joseph, P.M. Arif, P.M.G. Nambissan, D. Das, D. Rouxel, O.S. Oluwafemi, S. Thamos, N. Kalarikkal, Phys. Chem. Chem. Phys. 21, 8709 (2019)CrossRefGoogle Scholar
  26. 26.
    H.B. Sharma, K. Nomita Devi, V. Gupta, V. Gupta, J.H. Lee, S. Bobby Singh, J. Alloys Compd. 599, 32 (2014)Google Scholar
  27. 27.
    S.G. Chavan, S.D. Chavan, S.S. Mane, S.B. Kulkarni, D.J. Salunkhe, Mater. Chem. Phys. 208, 163 (2018)CrossRefGoogle Scholar
  28. 28.
    R.M. Thankacha, B. Raneesh, A. Mayeen, S. Karthika, S. Vivek, S.S. Nair, S. Thomas, N. Kalarikkal, J. Alloys. Compd. 731, 288 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Shen, J.G. Cao, H.T. Xue, J.P. Huang, L.W. Zhou, Chem. Phys. Lett. 423(1–3), 165 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    P. Sheng, W. Wen, Annu. Rev. Fluid Mech. 44(1), 143 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    W. Wen, H. Ma, W.Y. Tam, P. Sheng, Appl. Phys. Lett. 73(21), 3070 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    J. Popplewell, R.E. Rosensweig, J. Phys. D. Appl. Phys. 29(9), 2297 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    W. Wen, N. Wang, W.Y. Tam, P. Sheng, Appl. Phys. Lett. 71(17), 2529 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    R.L. Gao, J. Li, S.N. Han, B.C. Wen, T.Z. Zhang, H. Miao, J. Exp. Nanosci. 7(3), 282 (2012)CrossRefGoogle Scholar
  35. 35.
    B. Wang, Y. Yin, C. Liu, C.S. Yu, K. Chen, Dalton. T. 42(27), 10042 (2013)CrossRefGoogle Scholar
  36. 36.
    S. Singh, N. Kumar, A. Jha, M. Sahni, K.D. Sung, J.H. Jung, S. Chaubey, J. Mater. Sci. Mater. Electron. 26(1), 32 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.Chongqing Key Laboratory of Nano/Micro Composite Materials and DevicesChongqingChina

Personalised recommendations