Applied Physics A

, 125:879 | Cite as

Effects of laser-textured surface pattern on the wetting behavior and composition optimization of brazing filler: experimental study and numerical simulation

  • Xincheng Wang
  • Haiyan ChenEmail author
  • Lele Miao
  • Li Fu


To reduce interface brittle compounds of brazed joints, laser-textured surface pattern was used instead of excessive active element to enhance the wetting behavior of brazing filler on Ti3SiC2 ceramic substrate. The cylindrical surface pattern was designed by theoretical calculation and examined by numerical simulation. The numerical simulation results showed that the cylindrical surface pattern can not only effectively reduce the wetting angle on the substrate surface, but also greatly accelerate the spreading process of brazing filler. The results of wetting experiment showed that the wettability of Ag–Cu–2Ti (wt. %) brazing filler on Ti3SiC2 with cylindrical surface pattern sufficiently increased compared with that on smooth surface, which were consistent with the theoretical calculation and numerical simulation results. The titanium content in Ag–Cu–Ti that suitable for the brazing of Ti3SiC2 even could be reduced from 4.5 to 2.0 wt. %. The novel method provides a feasible route for promoting the wetting behavior and achieving composition optimization of brazing filler.


Surface pattern Ceramics Wetting Composition optimization 



Authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51775442 and 51974260), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JZ5009) and State Key Laboratory of Advanced Welding and Joining in Heilongjiang Province of China (Program No. AWJ-20-M13).


  1. 1.
    X.Y. Dai, J. Cao, Z. Chen, X.G. Song, J.C. Feng, Brazing SiC ceramic using novel B4C reinforced Ag–Cu–Ti composite filler. Ceram. Int. 42(5), 6319–6328 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Li, G.M. Sheng, H. Li, Additional active metal Nb in Cu–Ni system filler metal for brazing of TiC cermet/steel. Mater. Lett. 156, 10–13 (2015)CrossRefGoogle Scholar
  3. 3.
    Y.Q. Qin, J.C. Feng, Microstructure and mechanical properties of C/C composite/TC4 joint using AgCuTi filler metal. Mater. Sci. Eng. A. 454–455, 322–327 (2007)CrossRefGoogle Scholar
  4. 4.
    H.Y. Chen, J.K. Peng, L. Fu, Effects of interfacial reaction and atomic diffusion on the mechanical property of Ti3SiC2 ceramic to Cu brazing joints. Vacuum 130, 56–62 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    J.K. Liu, J. Cao, X.G. Song, Y.F. Wang, J.C. Feng, Evaluation on diffusion bonded joints of TiAl alloy to Ti3SiC2 ceramic with and without Ni interlayer: interfacial microstructure and mechanical properties. Mater. Des. 57, 592–597 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Nituca, Thermal analysis of electrical contacts from pantograph-catenary system for power supply of electric vehicles. Electr. Pow. Syst. Res. 96, 211–217 (2013)CrossRefGoogle Scholar
  7. 7.
    O. Dezellus, B. Gardiola, J. Andrieux, S. Lay, Experimental evidence of copper insertion in a crystallographic structure of Ti3SiC2 MAX phase. Scr. Mater. 104, 17–20 (2015)CrossRefGoogle Scholar
  8. 8.
    W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)CrossRefGoogle Scholar
  9. 9.
    L.G. Qin, P. Lin, Y.L. Zhang, G.N. Dong, Q.F. Zeng, Influence of surface wettability on the tribological properties of laser textured Co-Cr-Mo alloy in aqueous bovine serum albumin solution. Appl. Surf. Sci. 268, 79–86 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    K.C. Xu, H.P. Yan, C.F. Tan, Y.Y. Lu, Y. Li, G.W. Ho, R. Ji, M.H. Hong, Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced raman scattering. Adv. Opt. Mater. 6, 1701167 (2018)CrossRefGoogle Scholar
  11. 11.
    P.Q. Wang, Z. Liu, K.C. Xu, D.J. Blackwood, M.H. Hong, A.G. Aberle, R. Stangl, I.M. Peters, Periodic upright nanopyramids for light management applications in ultrathin crystalline silicon solar cells. IEEE J. Photovolt. 7, 493–501 (2017)CrossRefGoogle Scholar
  12. 12.
    K.C. Xu, C.T. Zhang, R. Zhou, R. Ji, M.H. Hong, Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt. express. 24, 10352–10358 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    K.C. Xu, R. Zhou, K. Takei, M.H. Hong, Toward flexible surface-enhanced Raman scattering(SERS) sensors for point-of-care diagnostics. Adv. Sci. 6, 1900925 (2019)CrossRefGoogle Scholar
  14. 14.
    K.C. Xu, Y.Y. Lu, S. Honda, T. Arie, S. Akita, K. Takei, Highly stable kirigami-structured stretchable strain sensors for perdurable wearable electronics. J. Mater. Chem. C. 7, 9609–9617 (2019)CrossRefGoogle Scholar
  15. 15.
    J. Subrahmanyam, M. Vijayakumar, Self-propagating high-temperature synthesis. J. Mater. Sci. 27, 6249–6273 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    G. Kumar, K.N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces. Adv. Colloid Interface. 133, 61–89 (2007)CrossRefGoogle Scholar
  17. 17.
    C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    S.F. Lunkad, V.V. Buwa, K.D.P. Nigam, Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chem. Eng. Sci. 62(24), 7214–7224 (2007)CrossRefGoogle Scholar
  19. 19.
    N. Malgarinos, M. Nikolopoulos, C. Marengo, M. Antonini, Gavaises, VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model. Adv. Colloid Interface 212, 1–20 (2014)CrossRefGoogle Scholar
  20. 20.
    ŠIkalo S Wilhelm HD Roisman S IV Jakirlić C 2005 Tropea, dynamic contact angle of spreading droplets: experiments and simulations Phys. Fluids 17 062103ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xincheng Wang
    • 1
    • 2
  • Haiyan Chen
    • 1
    • 2
    Email author
  • Lele Miao
    • 2
  • Li Fu
    • 1
    • 2
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Shaanxi Key Laboratory of Friction Welding TechnologiesNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations