Advertisement

Applied Physics A

, 125:881 | Cite as

Strain distributions in the InAlN barrier layers of In0.17Al0.83N/GaN heterostructure field-effect transistors

  • Yang ZhouEmail author
  • Zhe Xu
  • Juntao Li
Article
  • 33 Downloads

Abstract

Using measured gate-source capacitance–voltage (C–V) curves and forward current–voltage (I–V) curves for In0.17Al0.83N/GaN heterostructure field-effect transistors (HFETs) of various gate lengths with normal-Ohmic contacts and side-Ohmic contacts, the strain distributions in the InAlN barrier layers are analyzed. It is found that the compressive strain in the InAlN barrier layer is nearly uniformly distributed between source and drain contacts for devices with side-Ohmic contact processing while it is enhanced and monotonously decreased from the middle to the source/drain contact for devices with normal-Ohmic contact processing. This difference in the strain distributions is attributed to the difference in the lateral diffusing of Ohmic contact metal atoms into the InAlN barrier layer during the different Ohmic contact processing.

Notes

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2017YFB0403100, 2017YFB0403103) and Science Challenge Project (Grant No. TZ2018003).

References

  1. 1.
    O. Ambacher, J. Smart et al., J. Appl. Phys. 85, 3222 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    O. Ambacher, B. Foutz et al., J. Appl. Phys. 87, 334 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    A.F.M. Anwar, R.T. Webster, K.V. Smith, Appl. Phys. Lett. 88, 203510 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J. Jungwoo and J. A. del Alamo, IEDM pp 1–4 (2006)Google Scholar
  5. 5.
    C. Rivera, E. Muñoz, Appl. Phys. Lett. 94, 053501 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    P. Makaram, J. Joh, J. A. d. Alamo, T. Palacios, C. V. Thompson, Appl. Phys. Lett. 96, 233509 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    G. Meneghesso, M. Meneghini et al., Microelectron. Eng. 109, 257 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Kuzmik, IEEE Electron Device Lett. 22, 510 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    M. Neuburger, T. Zimmermann et al., Int. J. High Speed Electron. Syst. 14, 785 (2004)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, Y. Lv et al., IEEE Electron Device Lett. 38, 604 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Zhou, Z. Lin et al., Semicond. Sci. Technol. 29, 095011 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    J. Zhao, Z. Lin et al., Superlattices. Microstruct. 79, 21 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Luan, Z. Lin et al., Appl. Phys. Lett. 101, 113501 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    C. Luan, Z. Lin et al., J. Appl. Phys. 112, 054513 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    V. Fiorentini, F. Bernardini, O. Ambacher, Appl. Phys. Lett. 80, 1204 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    E.T. Yu, G.J. Sullivan et al., Appl. Phys. Lett. 71, 2794 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Lv, Z. Lin et al., Appl. Phys. Lett. 99, 123504 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    F. G.-P. Flores, C. Rivera, E. Munoz, Appl. Phys. Lett. 95, 203504 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    C. Luan, Z. Lin et al., Appl. Phys. A Mater. Sci. Process. 116, 2065 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    J. Zhao, Z. Lin, T.D. Corrigan, Z. Wang, Z. You, Z. Wang, Appl. Phys. Lett. 91, 173507 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Lv, Z. Lin et al., Appl. Phys. Lett. 98, 123512 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Microsystem and Terahertz Research CenterChina Academy of Engineering PhysicsChengduChina
  2. 2.Institute of Electronic EngineeringChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations