Advertisement

Applied Physics A

, 125:855 | Cite as

Effect of microwave treatment exposure time on functionalization and purification of multi-walled carbon nanotubes (MWCNTs)

  • Swamini ChopraEmail author
  • Revati Deshpande
  • Garima Naik
  • Kavita A. DeshmukhEmail author
  • Abhay D. Deshmukh
  • D. R. Peshwe
Article
  • 28 Downloads

Abstract

Carbon nanotube (CNT)-reinforced polymer composites are steadily replacing other materials and finding their applications in many structural components. This has been credited to their light weight, ease of processing and extraordinary thermal, mechanical and electrical properties. However, direct addition of CNTs into polymer leads to formation of agglomerates due to strong van der Waals’ force of attraction between individual nanotubes. These agglomerates then act as defects and hinder the properties of polymer/CNT composites. As a result, CNTs are functionalized in acids to minimize their tendency to agglomerate and improve dispersion in polymer matrix. The present study focuses on the microwave treatment of CNTs to achieve better functionalization as compared to the conventional ultra-sonication technique. The time of exposure of multi-walled carbon nanotubes (MWCNT) to the microwave radiation is optimized by investigating the structural integrity of different samples with Raman spectroscopy, infrared spectroscopy (FTIR), microscopy and purification effect by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS). The mechanism of sidewall modification of MWCNTs after functionalization is elucidated schematically as well.

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    S.P. Lonkar, O.S. Kushwaha, A. Leuteritz, G. Heinrich, R.P. Singh, RSC Adv. 2, 12255 (2012)CrossRefGoogle Scholar
  2. 2.
    L.V. Radushkevich, V.M. Lukyanovich, Sov. J. Chem. 88, 289–290 (1952)Google Scholar
  3. 3.
    S. Iijima, Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, 637 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Mater. Sci. Eng. A 334, 173 (2002)CrossRefGoogle Scholar
  6. 6.
    S. Hong, S. Myung, Nat. Nanotechnol. 2, 207 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    H. Meng, G.X. Sui, P.F. Fang, R. Yang, Polymer 49, 610 (2008)CrossRefGoogle Scholar
  8. 8.
    V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 46, 833 (2008)CrossRefGoogle Scholar
  9. 9.
    F. Avilés, J.V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado, Carbon 47, 2970 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Marega, G. Accorsi, M. Meneghetti, A. Parisini, M. Pratoa, D. Bonifazi, Carbon 47, 675 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Chen, S. Mitra, J. Nanosci. Nanotechnol. 8, 5770 (2008)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, Z. Iqbal, S. Mitra, J. Am. Chem. Soc. 128, 95 (2006)CrossRefGoogle Scholar
  13. 13.
    B.A. Kakade, V.K. Pillai, Appl. Surf. Sci. 254, 4936 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    S.D. Kim, J.W. Kim, J.S. Im, Y.H. Kim, Y.S. Lee, J. Fluor. Chem. 128, 60 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Misra, P.K. Tyagi, M.K. Singh, D.S. Misra, Diam. Relat. Mater. 15, 385 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    B. Kim, W.M. Sigmund, Langmuir 20, 8239 (2004)CrossRefGoogle Scholar
  17. 17.
    R. Yudianti, H. Onggo, Sudirman, Y. Saito, T. Iwata, J.I. Azuma, Open Mater. Sci. J. 5, 242 (2011)Google Scholar
  18. 18.
    M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, A. Hirsch, J. Am. Chem. Soc. 125, 8566 (2003)CrossRefGoogle Scholar
  19. 19.
    M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, Nano Lett. 3, 269 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, J. Judek, J. Alloys Compd. 501, 77 (2010)CrossRefGoogle Scholar
  21. 21.
    P.V. Kodgire, A.R. Bhattacharyya, S. Bose, N. Gupta, A.R. Kulkarni, A. Misra, Chem. Phys. Lett. 432, 480 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    S. Lefrant, J.P. Buisson, J. Schreiber, O. Chauvet, M. Baibarac, I. Baltoget, Synth. Met. 139, 783 (2003)CrossRefGoogle Scholar
  23. 23.
    Y. Tsukahara, T. Yamauchi, T. Kawamoto, Y. Wada, Bull. Chem. Soc. Jpn. 81, 387 (2008)CrossRefGoogle Scholar
  24. 24.
    A. Amiri, M. Maghrebi, M. Baniadam, S.Z. Heris, Appl. Surf. Sci. 257, 10261 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A.K. Jain, A.K. Dubey, N.K. Mehra, N. Lodhi, M. Nahar, D.K. Mishra, N.K. Jain, Nanomed. Nanotechnol. Biol. Med. 5, 432 (2009)CrossRefGoogle Scholar
  26. 26.
    P.C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, Compos. A 41, 1345 (2010)CrossRefGoogle Scholar
  27. 27.
    C. Huiqun, Z. Meifang, L. Yaogang, J. Solid State Chem. 179, 1208 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    V. Gomez, S. Irusta, O.B. Lawal, W.W. Adams, R.H. Hauge, C.W. Dunnill, A.R. Barron, RSC Adv. 6, 1 (2016)CrossRefGoogle Scholar
  29. 29.
    E. Vazquez, V. Georgakilas, M. Prato, Chem. Commun. 20, 2308–2309 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringM.I.T.AurangabadIndia
  2. 2.Department of Metallurgical and Materials EngineeringV.N.I.T.NagpurIndia
  3. 3.Department of PhysicsRTM Nagpur UniversityNagpurIndia

Personalised recommendations