Advertisement

Applied Physics A

, 125:851 | Cite as

Synthesis and characterization of urea-doped MgZnO nanoparticles for electronic applications

  • Nacer BadiEmail author
  • Syed Khasim
  • Apsar Pasha
Article
  • 42 Downloads

Abstract

In this work, we report on the synthesis of nitrogen-doped MgZnO thin films via sol–gel method using urea as a nitrogen source. The effect of nitrogen doping on the physical and optical properties was investigated through FTIR, UV–Vis spectroscopy, XRD, SEM, and TEM techniques. The FTIR spectra confirm the formation of nitrogen-doped MgZnO nanoparticles, while XRD, SEM and TEM revealed the formation of crystalline structure for the ternary alloys with particle size less than 50 nm. The optical properties of the MgZnO:N nanoparticles were analysed using diffused reflectance and UV–Vis spectroscopy. The diffuse reflectance spectra show a strong dependence on urea content in MgZnO which may be due to the π → π* electron transition of nitrogen 2px to oxygen 2pz sub-shell of non-bonding orbitals. Current density–voltage characteristics of the nitrogen-doped MgZnO ternary alloys were investigated by fabricating a Schottky diode (ITO-MgZnO:N-Al) structure. The JV characteristics of the Schottky device show a non-ohmic behavior with increase in current density with increased content of urea in MgZnO nanoparticles. Due to improved optical and electronic properties, these nitrogen-doped ternary alloys may play a significant role in micro- and optoelectronic devices.

Notes

Acknowledgements

The authors would like to acknowledge financial support for this work, from the Deanship of Scientific Research (DSR), University of Tabuk, Tabuk, Saudi Arabia, under Grant No. S-0077/1439.

References

  1. 1.
    D.C. Look, J. Electron. Mater. 35, 6 (2006)Google Scholar
  2. 2.
    Z.K. Tang, G.K.L. Wong, P. Yu, Appl. Phys. Lett. 72, 3270 (1998)ADSGoogle Scholar
  3. 3.
    C.Y. Yang, D.Y. Wan, Z. Wang, F.Q. Huang, Chin. Opt. Lett. 09, 103102 (2011)ADSGoogle Scholar
  4. 4.
    I. Gonzalez-Valls, M. Lira-Cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2, 19 (2009)Google Scholar
  5. 5.
    J. Song, S.A. Kulinich, J. Yan, Z. Li, J. He, C. Kan et al. Epitaxial ZnO nanowire-on-nanoplate structures as efficient and transferable field emitters. Adv Mater. 40, 5750 (2013)Google Scholar
  6. 6.
    Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer et al., Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl. Mater. Interfaces. 7, 14303 (2015)Google Scholar
  7. 7.
    A. Menzel, K. Subannajui, F. Güder, D. Moser, O. Paul, M. Zacharias, Multifunctional ZnO-nanowire-based sensor. Adv. Funct. Mater. 21, 4342 (2011)Google Scholar
  8. 8.
    A.K. Chandiran, M. Abdi-Jalebi, M.K. Nazeeruddin, M. Grätzel, Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dyesensitized solar cells. ACS Nano. 8, 2261 (2014)Google Scholar
  9. 9.
    J. Briscoe, S. Dunn, Piezoelectric Nano generators—a review of nanostructured piezoelectric energy harvesters. Nano Energy. 14, 15 (2015)Google Scholar
  10. 10.
    D.Y. Yong, H.Y. He, Z.K. Tang, S.H. Wei, B.C. Pan, Phys. Rev. B 92, 235207 (2015)ADSGoogle Scholar
  11. 11.
    H.P. Lu, P.P. Zhou, H.N. Liu, L.N. Zhang, Y. Yu, Y.L. Li, Z. Wang, Mater. Lett. 165, 123 (2016)Google Scholar
  12. 12.
    T.K. Pathak, V. Kumar, H.C. Swart, L.P. Purohit, J. Mod. Opt. 62, 1368 (2015)ADSGoogle Scholar
  13. 13.
    E. Lee, J. Park, M. Yim, S. Jeong, G. Yoon, Appl. Phys. Lett. 104, 213908 (2014)ADSGoogle Scholar
  14. 14.
    L.C. Zhu, C. Ton-That, M.R. Phillips, Mater. Lett. 99, 42 (2013)Google Scholar
  15. 15.
    A.A. Ostroushko, Physico-chemical fundamentals of solid-state materials for electronics and catalysis: tutorial. Ural University Publ., (2011) (in Russian)Google Scholar
  16. 16.
    A. Schleife, C. Rödl, J. Furthmüller, F. Bechstedt, Electronic and optical properties of MgxZn1−xO and CdxZn1−xO from ab initio calculations. New J. Phys. 13, 085012 (2011)ADSGoogle Scholar
  17. 17.
    J.F. Chien, H.Y. Shih, H.Y. Liao, J. Solid State Sci. Technol. 2, R249 (2013)Google Scholar
  18. 18.
    E.F. Venger, O.V. Melnichuk, YuA Pasechnik, Spectroscopy of residual rays (Naukova dumka, Kyiv, 2001). (in Russian) Google Scholar
  19. 19.
    C. Jin, Growth and characterization of ZnO and ZnO-based alloys: MgxZn1-xO and MnxZn1-xO. Ph.D Thesis. North Carolina State University, Raleigh (2003)Google Scholar
  20. 20.
    O. Taratula, E. Galoppini, D. Wang, D. Chu, Z. Zhang, H. Chen et al., Binding studies of molecular linkers to ZnO and MgZnO nanotip films. J. Phys. Chem. B 110, 6506 (2006)Google Scholar
  21. 21.
    A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)ADSGoogle Scholar
  22. 22.
    J.S. Wrench, I.F. Brunell, P.R. Chalker, J.D. Jin, A. Shaw, I.Z. Mitrovic, S. Hall, Compositional tuning of atomic layer deposited MgZnO for thin film transistors. Appl. Phys. Lett. 105, 202109 (2014)ADSGoogle Scholar
  23. 23.
    S.S. Hullavarad, S. Dhar, B. Varughese, I. Takeuchi, T. Venkatesan, R.D. Vispute, Realization of Mg (x = 0.15) Zn (1 − x = 0.85) O-based metal-semiconductor-metal UV detector on quartz and sapphire. J. Vac. Sci. Technol. A 23, 982–985 (2005)Google Scholar
  24. 24.
    W. Yang, R.D. Vispute, S. Choopun, R.P. Sharma, T. Venkatesan, H. Shen, Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn 0.66O thin films. Appl. Phys. Lett. 78, 2787–2789 (2001)ADSGoogle Scholar
  25. 25.
    K. Koike, K. Hama, I. Nakashima, G.Y. Takada, K.I. Ogata, S. Sasa, M. Inoue, M. Yano, Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications. J. Cryst. Growth 278, 288–292 (2005)ADSGoogle Scholar
  26. 26.
    J.-Y. Li, S.-P. Chang, M.-H. Hsu, S.-J. Chang, Photo-electrical properties of MgZnO thin-film transistors with high-k dielectrics. IEEE Photon. Technol. Lett. 30(1), 59–62 (2018)ADSGoogle Scholar
  27. 27.
    A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai et al., MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466 (1998)ADSGoogle Scholar
  28. 28.
    T.M. Brenner, T. A. Flores, P.F. Ndione, E.P. Meinig, G. Chen, D.C. Olson et al. Etch-resistant Zn1-xMgxO alloys: an alternative to ZnO for Functionalization of MgZnO nanorod films and characterization by FTIR microscopic imaging carboxylic acid surface modification. J. Phys. Chem. C 118, 12599 (2014)Google Scholar
  29. 29.
    Th Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region. Appl. Phys. Lett. 84, 5359 (2004)ADSGoogle Scholar
  30. 30.
    H.H. Zhang, X.H. Pan, H.P. He, W. Chen, J.Y. Huang, P. Ding, B. Lu, Z.Z. Ye, J.G. Lu, L.X. Chen, C.L. Ye, Temperature dependence of exciton localization in ZnO/ Zn1- xMgxO multiple quantum wells with different barrier compositions. Opt. Commun. 318, 37 (2014)ADSGoogle Scholar
  31. 31.
    Xu Wang, Z. Chen, Hu Congyu, K. Saito, T. Tanaka, M. Nishio, Q. Guo, Ultraviolet emission from MgZnO films and ZnO/MgZnO single quantum wells grown by pulsed laser deposition. J. Cryst Growth 483, 39 (2018)ADSGoogle Scholar
  32. 32.
    W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, R.D. Vispute, H. Shen, Appl. Phys. Lett. 82, 3424 (2003)ADSGoogle Scholar
  33. 33.
    S. Chongsri, W. Boonruang, W. Techitdheera, Pecharapa, N-doped MgZnO alloy thin film prepared by sol–gel method. Mater. Lett. 65, 1842–1845 (2011)Google Scholar
  34. 34.
    Z.L. Liu, Z.X. Mei, T.C. Zhang, Y.P. Liu, Y. Guo, X.L. Du, A. Hallen, J.J. Zhu, A.Y. Kuznetsov, J. Cryst. Growth 311, 4356 (2009)ADSGoogle Scholar
  35. 35.
    R.N. Gayen, S.N. Das, S. Dalui, R. Bhar, A.K. Pal, J. Cryst. Growth 310, 4073–4080 (2008)ADSGoogle Scholar
  36. 36.
    N. Badi, Y. AL-Douri, S. Khasim, Effect of nitrogen doping on structural and optical properties of MgxZn1-xO ternary alloys. Opt Mater 89, 554–558 (2019)ADSGoogle Scholar
  37. 37.
    D.-H. Li, H.-Q. Wang, H. Zhou, Y.-P. Li, Z. Huang, J.-C. Zheng, J.-O. Wang, H.-J. Qian, K. Ibrahim, X. Chen, H. Zhan, Y. Zhou, J. Kang, Chin. Phys. B 25, 076105 (2016)ADSGoogle Scholar
  38. 38.
    M. Sharma, P. Jeevanandam, Magnesium doping in hierarchical ZnO nanostructures and studies on optical properties. Superlatt. Microst. 52, 1083–1092 (2012)ADSGoogle Scholar
  39. 39.
    G. Kasi, K. Viswanathan, K. Sadeghi, J. Seo, Optical, thermal, and structural properties of polyurethane in Mg-doped zincoxide nanoparticles for antibacterial activity. Prog. Org. Coat. 133, 309–315 (2019)Google Scholar
  40. 40.
    D. Abdelkader, A. Jebali, A. Larbi, A. Harizi, M. Ben Rabeh, N. Khemiri, F. Antoni M. Kanzari, Synthesis, characterization, structural and optical absorption behaviour of SnxSbySz powders. Adv. Powder Technol. 27, 734–741 (2016)Google Scholar
  41. 41.
    L.S. Rao, T.V. Rao, S. Naheed, P.V. Rao, Structural and optical properties of zinc magnesium oxide nanoparticles synthesized by chemical co-precipitation. Mater. Chem. Phys. 203, 133–140 (2018)Google Scholar
  42. 42.
    V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sun light-driven photocatalysis. ACS Appl. Mater. Interfaces 2012(4), 2717–2725 (2012)Google Scholar
  43. 43.
    J. Iqbal, T. Jan, M. Ismail, N. Ahmad, A. Arif, M. Khan, M. Adil, H. Sami ul, A. Arshad, Influence of Mg doping level on morphology, optical, electrical properties and antibacterial activity of ZnO nanostructures. Ceram. Int. 40, 7487–7493 (2014)Google Scholar
  44. 44.
    W.W. Liua,b, B. Yaoa,, Y.F. Li, B.H. Li a, Z.Z. Zhanga, C.X. Shana, J.Y. Zhanga, D.Z. Shena, X.W. Fana, p-Type MgZnO thin films grown using N delta-doping by plasma-assisted molecular beam epitaxy. J. Alloys Compd 504, 484–487 (2010)Google Scholar
  45. 45.
    G. Kasi, J. Seo, Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater. Sci. Eng. C 98, 717–725 (2019)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Renewable Energy Laboratory, Nano Research UnitUniversity of TabukTabukSaudi Arabia
  2. 2.Physics DepartmentUniversity of TabukTabukSaudi Arabia
  3. 3.Department of PhysicsPES-UniversityBangaloreIndia
  4. 4.Department of PhysicsGousia College of EngineeringRamanagaramIndia

Personalised recommendations