Applied Physics A

, 125:845 | Cite as

Laser-induced forward transfer of silver nanoparticle ink using burst technique

  • Xingsheng WangEmail author
  • Bin Xu
  • Yuke Huang
  • Jian Zhang
  • Qi Liu


Laser-induced forward transfer (LIFT) is an effective approach to print materials in liquid state with high resolution. This procedure, however, suffers from bulging problem when printing continuous lines or patterns. In this study, LIFT of silver nanoparticle ink using burst technique was developed to mitigate this issue during printing continuous lines. Firstly, a set of droplet printing experiments were conducted to investigate the influences of the pulse energy and burst mode on the morphologies of the printed features. It was found that the resolution was enhanced and the phenomenon of splashing was improved with the introduction of burst technique at the same energy level. Thereafter, a group of lines were printed by changing the scanning speed in bursts of 1, 2 or 3 pulses. The results showed that the bulging of the printed line was effectively mitigated and the resolution was significantly improved in burst-3 mode.



This work was supported by National Natural Science Foundation of China (51705258), the Fundamental Research Funds for the Central Universities (KJQN201843), Natural Science Foundation of Jiangsu Province (BK20150685).


  1. 1.
    P. Serra, A. Piqué, Laser-induced forward transfer: fundamentals and applications. Adv. Mater. Technol. 4(1), 1800099 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Papazoglou, I. Zergioti, Laser induced forward transfer (LIFT) of nano-micro patterns for sensor applications. Microelectron. Eng. 182, 25–34 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Bohandy, B.F. Kim, F.J. Adrian, Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60, 1538–1539 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    Q. Li, D. Grojo, A.P. Alloncle, P. Delaporte, Dynamics of double-pulse laser printing of copper microstructures. Appl. Surf. Sci. 471, 627–632 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Laser-induced jet formation and droplet ejection from thin metal films. Appl. Phys. A 106, 479–487 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, G.W. Römer, Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films. Addit. Manuf. 24, 391–399 (2018)CrossRefGoogle Scholar
  7. 7.
    Z. Huang, Y. Huang, Y. Chen, Y. Deng, Z. Zhao, Direct and opposite droplet ejections from metal films induced by nanosecond laser pulses: experimental observation and lattice boltzmann modeling. J Micromech. Microeng. 29(2), 025001 (2019)CrossRefGoogle Scholar
  8. 8.
    C. Constantinescu, A.K. Diallo, L. Rapp, P. Cremillieu, R. Mazurczyk, F. Serein-Spirau et al., Laser-induced forward transfer of multi-layered structures for OTFT applications. Appl. Surf. Sci. 336, 11–15 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    M. Makrygianni, A. Ainsebaa, M. Nagel, S. Sanaur, Y.S. Raptis, I. Zergioti et al., Laser printed organic semiconductor PQT-12 for bottom-gate organic thin-film transistors: fabrication and characterization. Appl. Surf. Sci. 390, 823–830 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    M. Colina, P. Serra, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, DNA deposition through laser induced forward transfer. Biosens. Bioelectron. 20, 1638–1642 (2005)CrossRefGoogle Scholar
  11. 11.
    A.K. Nguyen, R.J. Narayan, Liquid-phase laser induced forward transfer for complex organic inks and tissue engineering. Ann. Biomed. Eng. 45, 84–99 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Sorkio, L. Koch, L. Koivusalo, A. Deiwick, S. Miettinen, B. Chichkov et al., Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 171, 57–71 (2018)CrossRefGoogle Scholar
  13. 13.
    J.M. Fernández-Pradas, P. Sopeña, S. Gonzalez-Torres, J. Arrese, A. Cirera, P. Serra, Laser-induced forward transfer for printed electronics applications. Appl. Phys. A 124(2), 214 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Antoshin, S.N. Churbanov, N.V. Minaev, Z. Deying, Z. Yuanyuan, A.I. Shpichka et al., LIFT-bioprinting, is it worth it? Bioprinting 15, e00052 (2019)CrossRefGoogle Scholar
  15. 15.
    B.T. Vinson, S.C. Sklare, D.B. Chrisey, Laser-based cell printing techniques for additive biomanufacturing. Curr. Opin. Biomed. Eng. 2, 14–21 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Piqué, J. Fitz-Gerald, D.B. Chrisey, R.C.Y. Auyeung, H.D. Wu, S. Lakeou, R.A. McGill, Direct writing of electronic materials using a new laser assisted transfer/annealing technique. Proc. SPIE. 3933, 105–112 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    M. Makrygianni, I. Kalpyris, C. Boutopoulos, I. Zergioti, Laser induced forward transfer of Ag nanoparticles ink deposition and characterization. Appl. Surf. Sci. 297, 40–44 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    P. Sopeña, J.M. Fernández-Pradas, P. Serra, Laser-induced forward transfer of low viscosity inks. Appl. Surf. Sci. 418, 530–535 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    M. Duocastella, H. Kim, P. Serra, A. Piqué, Optimization of laser printing of nanoparticle suspensions for microelectronic applications. Appl. Phys. A 106, 471–478 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, I. Zergioti, Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluid. Nanofluid. 16, 493–500 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Duocastella, J.M. Fernández-Pradas, J.L.M.P. Serra, Sessile droplet formation in the laser-induced forward transfer of liquids: A time-resolved imaging study. Thin Solid Films 518, 5321–5325 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla et al., Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies. Appl. Surf. Sci. 465, 136–142 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    S.A. Mathews, R.C.Y. Auyeung, H. Kim, N.A. Charipar, A. Piqué, High-speed video study of laser-induced forward transfer of silver nano-suspensions. J. Appl. Phys. 114, 064910 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    P. Delrot, S.P. Hauser, J. Krizek, C. Moser, Depth-controlled laser-induced jet injection for direct three-dimensional liquid delivery. Appl. Phys. A 124, 616 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    C. Florian, F. Caballero-Lucas, J.M. Fernández-Pradas, R. Artigas, S. Ogier, D. Karnakis, P. Serra, Conductive silver ink printing through the laser-induced forward transfer technique. Appl. Surf. Sci. 336, 304–308 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    C. Florian, F. Caballero-Lucas, J.M. Fernández-Pradas, S. Ogier, L. Winchester, D. Karnakis, R. Artigas, P. Serra, Printing of silver conductive lines through laser-induced forward transfer. Appl. Surf. Sci. 374, 265–270 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    D. Puerto, E. Biver, A.P. Alloncle, P. Delaporte, Single step high-speed printing of continuous silver lines by laser-induced forward transfer. Appl. Surf. Sci. 374, 183–189 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    X. Wang, C. Li, C. Ma, J. Feng, W. Hong, Z. Zhang, Formation of laser induced periodic structures on stainless steel using multi-burst picosecond pulses. Opt. Express 26, 6325–6330 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7, 196–198 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    C. Boutopoulos, A.P. Alloncle, I. Zergioti, P. Delaporte, A time-resolved shadowgraphic study of laser transfer of silver nanoparticle ink. Appl. Surf. Sci. 278, 71–76 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    W. Hu, Y.C. Shin, G. King, Modeling of multi-burst mode pico-second laser ablation for improved material removal rate. Appl. Phys. A 98, 407–415 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    P.C. Duineveld, The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J. Fluid. Mech. 477, 175–200 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    P. Sopeña, J. Arrese, S. Gonzalez-Torres, J.M. Fernández-Pradas, A. Cirera, P. Serra, Low-cost fabrication of printed electronics devices through continuous wave laser-induced forward transfer. ACS Appl. Mater. Interface 9, 29412–29417 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of EngineeringNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations