Advertisement

Applied Physics A

, 125:862 | Cite as

La2MgTiO6:Eu2+/TiO2-based composite for methyl orange (MO) decomposition

  • Jinyong Huang
  • Ming QinEmail author
  • Juan Yu
  • Aili Ma
  • Xiaokang Yu
  • Jianbo Liu
  • Zhiqin ZhengEmail author
  • Xinxing WangEmail author
Article
  • 27 Downloads

Abstract

In the recent years, exploring new materials with the photocatalytic functions is a hot research subject, but most of the photocatalysts need an excitation source during the photocatalytic process. In this work, we report the double-perovskite La2MgTiO6:Eu2+ phosphor having the purple-blue afterglow luminescence. Our PL results show that the samples upon excitation at the UV light can show a broad Eu2+ band with the maximum emission intensity at 387 nm. The afterglow range is found to match with the UV absorption region of the TiO2. As a result, we design the UV converted Eu2+ afterglow composite by serving the La2MgTiO6:Eu2+ phosphor as a ceramic substrate to immobilize the TiO2. The photocatalytic experiments reveal the afterglow behavior of La2MgTiO6:Eu2+ phosphor can continuously provide the UV photons to the TiO2 absorption, leading to a continuous-photocatalytic methyl orange degradation in the absence of UV irradiation. Together with the photocatalytic process under the UV irradiation and after removal off the excitation source, a maximum photocatalytic time of 3.5 h is detected.

Notes

Acknowledgements

This work was financially supported by the Innovative University Projects of Guangdong province (Project No. 831783), and the Quality Engineering Construction Projects of Beijing Institute of Technology University (Zhuhai Campus) (Project No. 2016003ZL, and 2017007JXGG), as well as Longshan academic talent research supporting program of Southwest University of Science and Technology (Project No. 18lzxt03, and No. 18zx309) and Southwest University of Science and Technology Natural Science Foundation (Project No. 18zx7125).

References

  1. 1.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).  https://doi.org/10.1021/cr5001892 CrossRefGoogle Scholar
  2. 2.
    J.-M. Herrmann, C. Duchamp, M. Karkmaz, B.T. Hoai, H. Lachheb, E. Puzenat, C. Guillard, Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. 14, 624–629 (2007).  https://doi.org/10.1016/j.jhazmat.2007.04.095 CrossRefGoogle Scholar
  3. 3.
    A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J. Mol. Catal. A Chem. 328, 8–26 (2010).  https://doi.org/10.1016/j.molcata.2010.05.023 CrossRefGoogle Scholar
  4. 4.
    W.L. da Silva, M.Z. Lansarin, P.R. Livotto, J.H.Z. dos Santos, Photocatalytic degradation of drugs by supported titania-based catalysts produced from petrochemical plant residue. Powder Technol. 279, 166–172 (2015).  https://doi.org/10.1016/j.powtec.2015.03.045 CrossRefGoogle Scholar
  5. 5.
    V. Nogueira, I. Lopes, T. Rocha-Santos, F. Gonçalves, R. Pereira, Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents. Environ. Technol. 39, 1586–1596 (2018).  https://doi.org/10.1080/09593330.2017.1334093 CrossRefGoogle Scholar
  6. 6.
    Y.Y. Yang, L. Kang, H. Li, Enhancement of photocatalytic hydrogen production of BiFeO3 by Gd3+ doping. Ceram. Int. 45, 8017–8022 (2019).  https://doi.org/10.1016/j.ceramint.2018.12.150 CrossRefGoogle Scholar
  7. 7.
    H. Li, L. Luo, P. Kunal, C.S. Bonifacio, Z.Y. Duan, J.C. Yang, S.M. Humphrey, R.M. Crooks, G. Henkelman, Oxygen reduction reaction on classically immiscible bimetallics: a case study of RhAu. J. Phys. Chem. C 122, 2712–2716 (2018).  https://doi.org/10.1021/acs.jpcc.7b10974 CrossRefGoogle Scholar
  8. 8.
    W. Chen, L. Chang, S.-B. Ren, Z.-C. He, G.-B. Huang, X.-H. Liu, Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. J. Hazard. Mater. 384, 121308 (2020).  https://doi.org/10.1016/j.jhazmat.2019.121308 CrossRefGoogle Scholar
  9. 9.
    L. Kang, H.L. Du, X. Du, H.T. Wang, W.L. Ma, M.L. Wang, F.B. Zhang, Study on dye wastewater treatment of tunable conductivity solid-waste-based composite cementitious material catalyst. Desalin. Water Treat. 125, 296–301 (2018).  https://doi.org/10.5004/dwt.2018.22910 CrossRefGoogle Scholar
  10. 10.
    T.C. Long, N. Saleh, R.D. Tilton, G.V. Lowry, B. Veronesi, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 40, 4346–4352 (2006).  https://doi.org/10.1021/es060589n ADSCrossRefGoogle Scholar
  11. 11.
    P.A. Pekakis, N.P. Xekoukoulotakis, D. Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 40, 1276–1286 (2006)CrossRefGoogle Scholar
  12. 12.
    P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutailler, C. Gaysse, Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal. Today 63, 363–369 (2000)CrossRefGoogle Scholar
  13. 13.
    J. Zhu, J. Luo, Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels. Acta Mech. 229, 1703–1719 (2018).  https://doi.org/10.1007/s00707-017-2060-8 MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Jiang, M.J. Lian, C.W. Lu, S.L. Ruan, Z. Wang, B.Y. Chen, SVM-DS fusion based soft fault detection and diagnosis in solar water heaters. Energy Explor. Exploitat. 37, 1125–1146 (2019).  https://doi.org/10.1177/0144598718816604 CrossRefGoogle Scholar
  15. 15.
    X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).  https://doi.org/10.1126/science.1200448 ADSCrossRefGoogle Scholar
  16. 16.
    L. Suljo, C. Phillip, B.I. David, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).  https://doi.org/10.1038/nmat3151 CrossRefGoogle Scholar
  17. 17.
    L. Kang, L. Zhao, S. Yao, C.X. Duan, A new architecture of super-hydrophilic β-SiAlON/graphene oxide ceramic membrane for enhanced anti-fouling and separation of water/oil emulsion. Ceram. Int. 45, 16717–16721 (2019).  https://doi.org/10.1016/j.ceramint.2019.05.195 CrossRefGoogle Scholar
  18. 18.
    M. Nolan, Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials. Chem. Commun. 47, 8617–8619 (2011).  https://doi.org/10.1039/C1CC13243A CrossRefGoogle Scholar
  19. 19.
    M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawa, K. Domen, T. Onishi, Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides. J. Phys. Chem. 90, 1633–1636 (1986).  https://doi.org/10.1021/j100399a036 CrossRefGoogle Scholar
  20. 20.
    L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B Environ. 140–141, 559–587 (2013).  https://doi.org/10.1016/j.apcatb.2013.04.035 CrossRefGoogle Scholar
  21. 21.
    H.C. Sun, H.Y. Wu, Y.H. Jin, Y. Lv, G.F. Ju, L. Chen, Z.Y. Feng, Y.H. Hu, Photocatalytic titanium dioxide immobilized on an ultraviolet emitting ceramic substrate for water purification. Mater. Lett. 240, 100–102 (2019).  https://doi.org/10.1016/j.matlet.2018.12.135 CrossRefGoogle Scholar
  22. 22.
    L. Zhao, L. Kang, S. Yao, Research and application of acoustic emission signal processing technology. IEEE Access 7, 984–993 (2019).  https://doi.org/10.1109/ACCESS.2018.2886095 CrossRefGoogle Scholar
  23. 23.
    J. Su, Z.-G. Sheng, L.-B. Xie, G. Li, A.X. Liu, Fast splitting based tag identification algorithm for anti-collision in UHF RFID system. IEEE Trans. Commun. 67, 2527–2538 (2019).  https://doi.org/10.1109/TCOMM.2018.2884001 CrossRefGoogle Scholar
  24. 24.
    J. Su, Z.-G. Sheng, V.C.M. Leung, Y.-R. Chen, Energy efficient tag identification algorithms for RFID: survey, motivation and new design. IEEE Wirel. Commun. 26, 118–124 (2019).  https://doi.org/10.1109/MWC.2019.1800249 CrossRefGoogle Scholar
  25. 25.
    S.K. Guo, R. Chen, H. Li, T.L. Zhang, Y.Q. Liu, Identify severity bug report with distribution imbalance by CR-SMOTE and ELM. Int. J. Softw. Eng. Knowl. Eng. 29, 139–175 (2019).  https://doi.org/10.1142/S0218194019500074 CrossRefGoogle Scholar
  26. 26.
    S.K. Guo, R. Chen, M.M. Wei, H. Li, Y.Q. Liu, ensemble data reduction techniques and multi-RSMOTE via fuzzy integral for bug report classification. IEEE Access 6, 45934–45950 (2018).  https://doi.org/10.1109/ACCESS.2018.2865780 CrossRefGoogle Scholar
  27. 27.
    H. Li, G.F. Gao, R. Chen, X. Ge, S.K. Guo, L.-Y. Hao, The influence ranking for testers in bug tracking systems. Int. J. Softw. Eng. Knowl. Eng. 29, 93–113 (2019).  https://doi.org/10.1142/S0218194019500050 CrossRefGoogle Scholar
  28. 28.
    D. Yuan, M. Sun, S. Tang, Y. Zhang, Z. Wang, J. Qi, Y. Rao, Q. Zhang, All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chin. Chem. Lett. (2019).  https://doi.org/10.1016/j.cclet.2019.09.051 CrossRefGoogle Scholar
  29. 29.
    J. Zhao, Y. Jing, J. Zhang, Y. Sun, Y. Wang, H. Wang, X. Bi, Aged refuse enhances anaerobic fermentation of food waste to produce short-chain fatty acids. Bioresour. Technol. 289, 121547 (2019).  https://doi.org/10.1016/j.biortech.2019.121547 CrossRefGoogle Scholar
  30. 30.
    J.B. Lian, Y. Liang, F.L. Kwong, Z.M. Ding, D.H.L. Ng, Template-free solvothermal synthesis of ZnO nanoparticles with controllable size and their size-dependent optical properties. Mater. Lett. 66, 318–320 (2012).  https://doi.org/10.1016/j.matlet.2011.09.007 CrossRefGoogle Scholar
  31. 31.
    W. Wang, Z.F. Mu, S.A. Zhang, Q.P. Du, Y. Qian, D.Y. Zhu, F.G. Wu, Bi3+ and Sm3+ co-doped La2MgGeO6: a novel color-temperature indicator based on different heat quenching behavior from different luminescent centers. J. Lumin. 206, 462–468 (2019).  https://doi.org/10.1016/j.jlumin.2018.10.112 CrossRefGoogle Scholar
  32. 32.
    J. Zhao, M. Xin, J. Zhang, Y. Sun, S. Luo, H. Wang, Y. Wang, X. Bi, Diclofenac inhibited the biological phosphorus removal: Performance and mechanism. Chemosphere. 243, 125380 (2019).  https://doi.org/10.1016/j.chemosphere.2019.125380 CrossRefGoogle Scholar
  33. 33.
    H.L. Du, C.Y. Ma, W.X. Ma, H.T. Wang, Microstructure evolution and dielectric properties of Ce-doped SrBi4Ti4O15 ceramics synthesized via glycine-nitrate process. Process. Appl. Ceram. 12, 303–312 (2018).  https://doi.org/10.2298/pac1804303d CrossRefGoogle Scholar
  34. 34.
    H. Chen, Sh Zhang, Z. Zhao, M. Liu, Q. Zhang, Application of dopamine functional materials in water pollution control. Process in Chemistry 31, 571–579 (2019).  https://doi.org/10.7536/PC180823 ADSCrossRefGoogle Scholar
  35. 35.
    Z.F. Mu, Y.H. Hu, Y.H. Wang, H.Y. Wu, C.J. Fu, F.W. Kang, The structure and luminescence properties of long afterglow phosphor Y3– xMnxAl5– xSixO12. J. Lumin. 131, 676–681 (2011).  https://doi.org/10.1016/j.jlumin.2010.11.016 CrossRefGoogle Scholar
  36. 36.
    Z.F. Mu, Y.H. Hu, H.Y. Wu, C.J. Fu, F.W. Kang, The structure and luminescence properties of a novel orange emitting phosphor Y3MnxAl5-2 xSixO12. Phys. B 406, 864–868 (2011).  https://doi.org/10.1016/j.physb.2010.12.015 ADSCrossRefGoogle Scholar
  37. 37.
    P.S. Fortunate, S.N.-T. Misael, Removal of methyl orange (MO) from water by adsorption onto modified local clay (Kaolinite). Phys. Chem. 6, 39–48 (2016).  https://doi.org/10.5923/j.pc.20160602.02 CrossRefGoogle Scholar
  38. 38.
    H. Chen, A.G. Zhong, J.Y. Wu, J. Zhao, H. Yan, Adsorption behaviors and mechanisms of methyl orange on heat-treated palygorskite clays. Ind. Eng. Chem. Res. 51, 14026–14036 (2012).  https://doi.org/10.1021/ie300702j CrossRefGoogle Scholar
  39. 39.
    M. Inagaki, M. Nonaka, F. Kojin, T. Tsumura, M. Toyoda, Cyclic performance of carbon-coated TiO2 for photocatalytic activity of methylene blue decomposition. Environ. Technol. 27, 521–528 (2010).  https://doi.org/10.1080/09593332808618669 CrossRefGoogle Scholar
  40. 40.
    L.W. Zhang, H.B. Fu, Y.F. Zhu, Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater. 18, 2180–2189 (2008).  https://doi.org/10.1002/adfm.200701478 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and EnvironmentZhuhai Campus of Beijing Institute TechnologyZhuhaiChina
  2. 2.School of Engineering TechnologyBeijing Normal University ZhuhaiZhuhaiChina
  3. 3.Key Laboratory of Degraded and Unused Land Consolidation EngineeringThe Ministry of Land and ResourcesXi’anChina
  4. 4.Shaanxi Provincial Land Consolidation Engineering Technology Research CenterXi’anChina
  5. 5.Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and TechnologyMianyangChina
  6. 6.National Co-Innovation Center for Nuclear Waste Disposal and Environmental SafetySouthwest University of Science and TechnologyMianyangChina
  7. 7.School of Life Sciences and EngineeringSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations