Advertisement

Applied Physics A

, 125:831 | Cite as

Stress relaxation in LTPS TFT backplane by architecture modulation on plastic

  • Chang Bum ParkEmail author
Article
  • 50 Downloads

Abstract

The effect of structural design on inorganic backplanes was discussed to achieve highly bendable characteristics for flexible electronic applications. Based on a low-temperature polysilicon (LTPS) thin-film transistor backplane, the failure mechanics and tolerance of structures were implemented as a function of backplane geometry and stress value. Results showed that the strain resistance increased in the thin-film backplane by adopting island geometry under bending stress, which was against the fatigue formation with enhanced resilience. The electrical integrity of transistors was achieved at the bending radius of a few millimeters for an island backplane architecture, and the conventional structured inorganic backplanes underwent a significant change in electromechanical feature under the mechanical cyclic bending stress. The stress analysis on the bended surface and the stability behaviors of plastic backplanes embedded in different configurations also showed that the mesh-like islanded geometry in a bending system willingly helped to release the accumulated sheer stress in the thin films.

Notes

References

  1. 1.
    X. Huang, Y. Qu, D. Fan, J. Kim, S.R. Forrest, Org. Electron. 69, 297–300 (2019)CrossRefGoogle Scholar
  2. 2.
    A.T. Zocco, H. You, J.A. Hagen, A.J. Steckl, Nanotechnology 25, 094005 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    J.H. Hong, J.M. Shin, G.M. Kim, H. Joo, G.S. Park, I.B. Hwang, M.W. Kim, W.-S. Park, H.Y. Chu, S. Kim, J. Soc. Inform. Display 25(3), 194 (2017)CrossRefGoogle Scholar
  4. 4.
    M.A. Rahman, H. Kim, Y.K. Lee, C. Lee, H. Nam, J.S. Lee, H. Soh, J.K. Lee, E.G. Lee, J. Lee, J. Nanosci. Nanotechnol. 12, 1348 (2012)CrossRefGoogle Scholar
  5. 5.
    G.G. Heredia, L.A. Gonzalez, H.N. Alshareef, B.E. Gnade, M.Q. Lopez, Semicond. Sci. Technol. 25, 115001 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater. 9, 1015 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M.-K. Kang, S.J. Kim, H.J. Kim, Sci. Rep. 4, 6858 (2014)CrossRefGoogle Scholar
  8. 8.
    M.-W. Ma, T.-Y. Chiang, T.-S. Chao, T.-F. Lei, Semicond. Sci. Technol. 24(7), 072001 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    E.K. Park, S. Kim, J. Heo, H.J. Kim, Appl. Surf. Sci. 370, 126–130 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    S.-H. Cho, B.-H. Ko, H.-S. Lee, Eng. Fract. Mech. 200, 283–293 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Gleskova, S. Wagner, Z. Suo, Appl. Phys. Lett. 75, 3011 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    H. Gleskova, P.I. Hsu, Z. Xi, J.C. Sturm, Z. Suo, S. Wagner, J. Non-Cryst. Solids 338–340, 732 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Su, S. Li, R. Li, C. Dagdeviren, Appl. Phys. Lett. 07, 041905 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    W. Fan, J. Cheng, X. Zhu, Y. Du, X. Huang, Int. Conf. Display Technol. 49(S1), 212–213 (2018)Google Scholar
  15. 15.
    W.-H. Chen, M.-C. Hsieh, T.T.-J. Wang, T.-C. Chang, M.-J. Yang, B.-Y. Su, Y.-H. Yeh, J.-C. Ho, G. Chen, C.-C. Tsai, C.-C. Lee, SID Symp. Digest Tech. Papers 48(1), 1742 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Chen, W. Zhou, M. Zhang, H.-S. Kwok, Thin Solid Films 564, 397 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    C.B. Park, H. Na, S.S. Yoo, K.-S. Park, Appl. Phys. Express 8, 111201 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    C.B. Park, H. Na, S.S. Yoo, K.-S. Park, Appl. Phys. Express 9, 031101 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    H.R. Choi, B.C. Mohanty, J.S. Kim, Y.S. Cho, A.C.S. Appl, Mater. Interfaces. 2(9), 2471 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Gleskova, S. Wagner, J. Non-Cryst, Solids 354, 2627 (2008)Google Scholar
  21. 21.
    B. Tabarrok, Z. Qin, Comput. Struct. 45(5–6), 973–984 (1992)CrossRefGoogle Scholar
  22. 22.
    C.C. Lee, Y.S. Shih, C.S. Wu, C.H. Tsai, S.T. Yeh, Y.H. Peng, J. Phys. D Appl. Phys. 45, 275102 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    W. Xu, T.J. Lu, F. Wang, Int. J. Solid Struct. 47, 1830 (2010)CrossRefGoogle Scholar
  24. 24.
    C.H. Hsueh, M. Yanaka, J. Mater. Sci. 38(8), 1809 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Suo, E.Y. Ma, H. Gleskova, S. Wanger, Appl. Phys. Lett. 74, 1177 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    P.H. Townsend, D.M. Barnett, T.A. Brunner, J. Appl. Phys. 62, 4438 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    H. Gleskova, I.-C. Cheng, S. Wagner, J.C. Sturm, Z. Suo, Sol Energy 80, 687–693 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Corporate R&D CenterLG DisplayPaju-siRepublic of Korea

Personalised recommendations