Advertisement

Applied Physics A

, 125:830 | Cite as

Effect of alkali metal carbonate A2CO3 (A = Li, Na, K) on AC susceptibility and superconducting properties of YBa2Cu3O7−δ

  • K. Muhammad-Najib
  • N. Nur-Farisha
  • Z. Nurhafizatul-Aqma
  • A. B. P. Ilhamsyah
  • R. Abd-ShukorEmail author
Article
  • 35 Downloads

Abstract

The effect of alkali metal carbonate (A2CO3)x addition on YBa2Cu3O7−δ with A = K, Na and Li for x = 0, 0.3, 0.5 and 1.0 wt% has been investigated. XRD patterns showed a single YBa2Cu3O7−δ phase for all samples. The resistance versus temperature measurements showed that all samples exhibited metallic normal state behavior. The addition of Li2O3 suppressed the superconductivity of YBa2Cu3O7−δ more than Na2CO3 and K2CO3. The AC susceptibility measurements showed a decrease in Tcχ for Li2CO3 addition. Tcχ was not much affected with Na2CO3 and K2CO3 addition which was around 93–94 K for x = 0–1.0 wt%. However, Tcχ was very much suppressed in the Li2O3-added samples with Tcχ decreasing from 94 K for x = 0 to 83 K for x = 1.0 wt%. The peak temperature Tp of the imaginary part of the susceptibility χ″ shifted to lower temperatures for Li2CO3, Na2CO3 and K2CO3 addition. This indicated the intergranular coupling and flux pinning force were suppressed when alkali metal carbonate was added. This work also showed that alkali metals with smaller ionic radius, Li, suppressed superconductivity of YBa2Cu3O7−δ more than the larger ionic radius, Na and K.

Notes

Acknowledgements

This research was supported by the Ministry of Education of Malaysia under Grant no. FRGS/1/2017/STG02/UKM/01/1.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest regarding this paper.

References

  1. 1.
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii, Nature 414, 368 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    K. Wei, K. Ing, M.S. Hamdan, S. Radiman, R. Abd-Shukor, J. Supercond. Nov. Magn. 31, 2699 (2018)CrossRefGoogle Scholar
  4. 4.
    M.B. Maple, J. Magn. Magn. Mater. 177, 18 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    J.M.S. Skakle, Mater. Sci. Eng. R Rep. 23, 1 (1998)CrossRefGoogle Scholar
  6. 6.
    D. Volochová, S. Piovarči, M. Radušovská, V. Antal, J. Kováč, K. Jurek, M. Jirsa, P. Diko, Phys. C 494, 36 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K. Zhetpisbaev, S. Kumekov, N.R.M. Suib, I.P.A. Bakar, R. Abd-Shukor, Int. J. Electrochem. Sci. 14, 279 (2019)CrossRefGoogle Scholar
  8. 8.
    K. Muhammad-Aizat, R. Abd-Shukor, Sains Malaysiana 47(7), 1579 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Al-Sharabi, S.Y. Tajuddin, A.D.F.W. Saffiey, S. Jasman, H.A. Alwi, M.H. Jumali, R. Abd-Shukor, Sains Malaysiana 45, 1959 (2016)CrossRefGoogle Scholar
  10. 10.
    E. Hannachi, Y. Slimani, A. Ekicibil, A. Manikandan, F.B. Azzouz, Mater. Chem. Phys. (2019).  https://doi.org/10.1016/j.matchemphys.2019.121721 CrossRefGoogle Scholar
  11. 11.
    Y. Slimani, M.A. Almessiere, E. Hannachi, F.O. Al-qwairi, A. Manikandan, A. Baykal, F.B. Azzouz, Ceram. Int. (2019).  https://doi.org/10.1016/j.ceramint.2019.07.196 CrossRefGoogle Scholar
  12. 12.
    A. Al-Sharabi, S.Y. Tajuddin, A.D.F.W. Saffiey, S. Jasman, H.A. Alwi, M.H. Jumali, R. Abd-Shukor, Int. J. Electrochem. Sci. 12, 90 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Shlyk, G. Krabbes, G. Fuchs, K. Nenkov, P. Verges, Appl. Phys. Lett. 81, 5000 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    L. Shlyk, G. Krabbes, G. Fuchs, Phys. C 390, 325 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    D. Horvath, C. Harnois, J.G. Noudem, Mater. Sci. Eng. B 151, 36 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Nicolas-Francillon, F. Maury, R. Ollitrault-Fichet, M. Nanot, Phys. C 317, 579 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    X.W. Zou, H. Zhang, Mater. Lett. 42, 171 (2000)CrossRefGoogle Scholar
  18. 18.
    T. Nurgaliev, S. Miteva, I. Nedkov, A. Veneva, M. Taslakov, J. Appl. Phys. 76, 7118 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    C.H. Chen, B. Kumar, J. Am. Ceram. Soc. 77, 1025 (1994)CrossRefGoogle Scholar
  20. 20.
    S.A. Siddiqi, B. Akhtar, J.A.A. Khan, J. Mater. Sci. Lett. 15, 1733 (1996)CrossRefGoogle Scholar
  21. 21.
    Z. Drzazga, H. Broda, F. Seidler, P. Böhm, H. Geus, D. Wohlleben, J. Magn. Magn. Mater. 83, 515 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    A. Veneva, I. Nedkov, V. Lovchinov, Phys. C 235–240, 805 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    A. Veneva, I. Nedkov, V. Lovchinov, Appl. Supercond. 3, 43 (1995)CrossRefGoogle Scholar
  24. 24.
    A. Veneva, I. Iordanov, L. Toshev, A. Stoyanova-Ivanova, D. Gogova, Phys. C 308, 175 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    P.S. Mukherjee, A. Simon, M.S. Sarma, A.D. Damodaran, Solid State Commun. 81, 253 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    P. Murugaraj, J. Maier, A. Rabenau, Solid State Commun. 66, 735 (1988)ADSCrossRefGoogle Scholar
  27. 27.
    X.S. Wu, J. Gao, Phys. C 329, 285 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    A. Koblischka-Veneva, M.R. Koblischka, Phys. C 392–396, 596 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Saito, T. Noji, A. Endo, N. Higuchi, K. Fujimoto, T. Oikawa, A. Hattori, K. Furuse, Phys. B+C 148, 336 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    C.P. Bean, Rev. Mod. Phys. 36, 31 (1964)ADSCrossRefGoogle Scholar
  31. 31.
    D. Yegen, C. Terzioglu, O. Gorur, I. Belenli, A. Varilci, Chin. J. Phys. 44, 3 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • K. Muhammad-Najib
    • 1
  • N. Nur-Farisha
    • 1
  • Z. Nurhafizatul-Aqma
    • 1
  • A. B. P. Ilhamsyah
    • 1
  • R. Abd-Shukor
    • 1
    Email author
  1. 1.School of Applied PhysicsUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations