Advertisement

Applied Physics A

, 125:838 | Cite as

Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems

  • F. I. El-Agawany
  • E. KavazEmail author
  • U. Perişanoğlu
  • M. Al-Buriahi
  • Y. S. Rammah
Article
  • 72 Downloads

Abstract

This work aims to research not only neutron and gamma shielding specialties of Sm2O3-doped TeO2–ZnO glasses but also mass stopping power (MSP) and projected range (PR) for alpha and proton particles. Mass attenuation coefficient (μ/ρ) of 60(TeO2)–(40−x)ZnO–x(Sm2O3): x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 mol%) glasses were obtained using GEANT4 Monte Carlo codes and WinXCOM software. A good agreement was observed between the two outcomes. The insertion of Sm2O3 into the glasses raised the μ/ρ values. It was found that TZSm0.4 glass owns lowest MFP, HVL and TVL values than the other glass samples due to its high specific gravity. Besides, the additive material increased effective atomic number (Zeff) values while the Exposure (EBF) and Energy Absorption (EABF) Buildup Factors decreased which are computed at 0.015–15 MeV photon energies up to 40 mfp. This shows that the addition of Sm2O3 improves the performance of glasses to reduce gamma radiation. Moreover, fast neutron macroscopic cross-sections (ΣR) of the glasses were specified. MSP and PR values were also computed for proton (H1) and alpha (He+2) particles. The outcomes display that the specific gravity of the TZSm glasses are extremely influential on neutron, alpha and proton shielding. With the largest ΣR and lowest PR values, the TZ0.4 glass showed the ability to stop both neutral and charged particles. It can be deduced that TZSM glasses with Sm2O3 addition may be preferred shield materials in the sense of gamma, neutron, alpha and proton attenuation.

Notes

References

  1. 1.
    R. Baskar, K.A. Lee, R. Yeo, K.W. Yeoh, Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9, 193 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Singh, H. Singh, J. Sharma, T. Singh, P.S. Singh, Fusible alloys: a potential candidate for gamma rays shield design. Prog. Nucl. Energy 106, 387–395 (2018)CrossRefGoogle Scholar
  3. 3.
    V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284–288 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    S.F. Olukotun, S.T. Gbenu, F.I. Ibitoye, O.F. Oladejo, H.O. Shittu, M.K. Fasasi, F.A. Balogun, Investigation of gamma radiation shielding capability of two clay materials. Nucl. Eng. Technol. 50, 957–962 (2018)CrossRefGoogle Scholar
  5. 5.
    M.I. Sayyed, G. Lakshminarayana, I.V. Kityk, M.A. Mahdi, Evaluation of shielding parameters for heavy metal fluoride-based tellurite-rich glasses for gamma ray shielding applications. Radiat. Phys. Chem. 139, 33–39 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. (2019).  https://doi.org/10.1016/j.net.2019.05.013 CrossRefGoogle Scholar
  7. 7.
    Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, R. El-Mallawany, Optical properties and gamma-shielding features of bismuth borate glasses. Appl. Phys. A 124, 832 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Y.S. Rammah, A.S. Abouhaswa, M.I. Sayyed, H.O. Tekin, R. El-Mallawany, Structural, UV and shielding properties of ZBPC glasses. J. Non-Cryst. Solids 509, 99–105 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Al-Hadeethi, M.I. Sayyed, Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceram. Int. 45, 24858–24864 (2019)CrossRefGoogle Scholar
  11. 11.
    R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 161, 55–59 (2019)CrossRefGoogle Scholar
  12. 12.
    E. Kavaz, An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiat. Phys. Chem. 160, 112–123 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, P. Limsuwan, Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 137, 72–77 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Ali, Y.S. Rammah, M.H. Shaaban, The influence of TiO2 on structural, physical and optical properties of B2O3–TeO2–Na2O–CaO glasses. J. Non-Cryst. Solids 514, 52–59 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Des. 307, 364–376 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Afifi, R. El-Mallawany, N. El-Khoshkhany, Ultrasonic studies of (TeO2) 50–(V2O5)50−x(TiO2)x glasses. Mater. Chem. Phys. 95, 321 (2006)CrossRefGoogle Scholar
  17. 17.
    H. Afifi, M. Sedky, R. El-Mallawany, Relaxation phenomena in tellurite glasses. J. Appl. Phys. 107, 053523 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Y.B. Saddeek, R. El-Mallawany, H.A. Afifi, Mechanical relaxation of some tellurovanadate glasses. J. Non Cryst. Solid 417, 28 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    R. El-Mallawany, H. Afifi, Elastic moduli and crosslinking of some tellurite glass systems. J. Matter. Chem. And Phys. 143(1), 11 (2013)CrossRefGoogle Scholar
  20. 20.
    H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non-Cryst. Solids 355, 348 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40, 14477–14481 (2014)CrossRefGoogle Scholar
  22. 22.
    I.Z. Hager, R. El-Mallawany, A. Bulou, Luminescence spectra and optical properties of TeO2–WO3–Li2O glasses doped with Nd Sm and Er rare earth ions. Phys. B 406, 972–980 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    I.Z. Hager, R. El-Mallawany, Preparation and structural studied in the (70–x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J. Mater. Sci. 45, 897–905 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    H.M. Moawad, H. Jain, R. El-Mallawany, T. Ramadan, M. El-Sharbiny, Electrical conductivity of silver vanadium tellurite glasses. J. Am. Ceram. Soc. 85, 2655–2659 (2002)CrossRefGoogle Scholar
  25. 25.
    S.E. Ibrahim, Y.S. Rammah, I.Z. Hager, R. El-Mallawany, UV and electrical properties of TeO2-WO3-Li2O-Nb2O5/Sm2O3/Pr6O11/Er2O3 glasses. J. Non-Cryst. Solids 498, 443–447 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    M.I. Sayyed, R. El-Mallawany, Shielding properties of (100–x)TeO2–(x)MoO3 glasses. Mater. Chem. Phys. 201, 50–56 (2017)CrossRefGoogle Scholar
  27. 27.
    R. El-Mallawany, M.I. Sayyed, M.G. Dong, Y.S. Rammah, Simulation of radiation shielding properties of glasses contain PbO. Radiat. Phys. Chem. 151, 239–252 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    M.G. Dong, R. El-Mallawany, M.I. Sayyed, H.O. Tekin, Shielding properties of 80TeO2–5TiO2–(15–x) WO3–xAnOm glasses using WinXCom and MCNP5 code. Radiat. Phys. Chem. 141, 172–178 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    A. Aşkın, M.I. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M.R. Kaçal, Investigation ofthe gamma ray shielding parameters of (100–x)[0.5Li2O–0.1B2O3 –0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes, J. Non-Cryst. Solids 521 (2019) 119489.ADSCrossRefGoogle Scholar
  30. 30.
    K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. DOI: 10.1016/j.net.2019.05.013.CrossRefGoogle Scholar
  31. 31.
    M.I. Sayyed, K.M. Kaky, D.K. Gaikwad, O. Agar, U.P. Gawai, S.O. Baki, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-Cryst. Solids 507, 30–37 (2019)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses, Ceram. Int. DOI: 10.1016/j.ceramint.2019.07.056.CrossRefGoogle Scholar
  33. 33.
    Y.S. Rammah, A. Askin, A.S. Abouhaswa, F.I. El-Agawany, M.I. Sayyed, Synthesis, physical, structural and shielding properties of newly developed B2O3–ZnO–PbO–Fe2O3 glasses using Geant4 code and WinXCOM program. Appl. Phys. A 125, 523 (2019)ADSCrossRefGoogle Scholar
  34. 34.
    M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3–Bi2O3–PbO–TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 1197, 656–665 (2019)ADSCrossRefGoogle Scholar
  35. 35.
    B. Eraiah, Optical properties of samarium doped zinc–tellurite glasses. Bull. Mater. Sci. 29, 375–378 (2006)CrossRefGoogle Scholar
  36. 36.
    B. Eraiah, R.V. Anavekar, DC electronic conductivity studies on zinc vanadophosphate glasses. Phys. Chem. Glasses 42, 121–125 (2001)Google Scholar
  37. 37.
    I. Ardelean, S. Cora, R.C. Lucacel, O. Hulpus, EPR and FT-IR spectroscopic studies of B2O3–Bi2O3–MnO glasses. Solid State Sci. 7, 1438–1442 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code (J. Mol, Struct, 2019)CrossRefGoogle Scholar
  39. 39.
    F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015)CrossRefGoogle Scholar
  40. 40.
    F. Akman, M.R. Kaçal, M.S. Soylu, Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95, 1005–1011 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    B. Oto, S.E. Gulebaglan, Z. Madak, E. Kavaz, Effective atomic numbers, electron densities and gamma rays buildup factors of inorganic metal halide cubic perovskites CsBX3 (B = Sn, Ge; X = I, Br, Cl). Radiat. Phys. Chem. 159, 195–206 (2019).  https://doi.org/10.1016/j.radphyschem.2019.03.010 ADSCrossRefGoogle Scholar
  42. 42.
    K.S. Mann, J. Singla, V. Kumar, G.S. Sidhu, Investigations of mass attenuation coefficients and exposure buildup factors of some low-Z building materials. Ann. Nucl. Energy (2012).  https://doi.org/10.1016/j.anucene.2012.01.004 CrossRefGoogle Scholar
  43. 43.
    E. Kavaz, N. Ekinci, H.O. Tekin, M.I. Sayyed, B. Aygün, U. Perişanoğlu, Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 115, 12–20 (2019)CrossRefGoogle Scholar
  44. 44.
    B. Oto, N. Yildiz, T. Korkut, E. Kavaz, Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Des. (2015).  https://doi.org/10.1016/j.nucengdes.2015.07.060 CrossRefGoogle Scholar
  45. 45.
    R. Macian, Biological effects of radiation, reactors concepts manual, USNRC Technical Training Center.Google Scholar
  46. 46.
    M.O. El-Ghossain, Calculations of stopping power and range of electrons interaction with different material and human body parts. Int. J. Sci. Technol. Res. 6(1), 114–118 (2017)Google Scholar
  47. 47.
    J.F. Ziegler, SRIM-2003, in Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms (2004). doi:10.1016/j.nimb.2004.01.208.CrossRefGoogle Scholar
  48. 48.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—The stopping and range of ions in matter (2010), in: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms (2010) 10.1016/j.nimb.2010.02.091CrossRefGoogle Scholar
  49. 49.
    S. Agostinelli et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    J. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Yoshihara, K. Shimazoe, Y. Mizumachi, H. Takahashi, Evaluation of double gamma coincidence Compton imaging method with GEANT4 simulation. Nucl. Instrum. Meth. A 873, 51–55 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    H.O. Tekin, L.R.P. Kassab, Shams A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, O. Kilicoglu. Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceram. Int. 45 (2019) 24664–24674. doi: 10.1016/j.ceramint.2019.08.204.CrossRefGoogle Scholar
  53. 53.
    S.A.M. Issa, H.O. Tekin, T.T. Erguzel, G. Susoy, The effective contribution of PbO on nuclear shielding properties of xPbO-(100–x)P2O5 glass system: a broad range investigation. Appl. Phys. A 125, 640 (2019).  https://doi.org/10.1007/s00339-019-2941-x ADSCrossRefGoogle Scholar
  54. 54.
    H.O. Tekin, E. Kavaz, E.E. Altunsoy, M. Kamislioglu, O. Kilicoglu, O. Agar, M.I. Sayyed, N. Tarhan, Characterization of a broad range gamma-ray and neutron shielding properties of MgO-Al2O3-SiO2-B2O3 and Na2O-Al2O3-SiO2 glass systems. J. Non-Cryst. Solids 518, 92–102 (2019).  https://doi.org/10.1016/j.jnoncrysol.2019.05.012 ADSCrossRefGoogle Scholar
  55. 55.
    A. Alatawi, A.M. Alsharari, S.A.M. Issa, M. Rashad, A.A.A. Darwish, Y.B. Saddeek, H.O. Tekin, Improvement of mechanical properties and radiation shielding performance of Al-Bi-BO3 glasses using yttria: An experimental investigation. Ceram. Int. (2019).  https://doi.org/10.1016/j.ceramint.2019.10.069 CrossRefGoogle Scholar
  56. 56.
    S.A.M. Issa, H.O. Tekin, The multiple characterization of gamma, neutron and proton shielding performances ofxPbO-(99–x)B2O3-Sm2O3 glass system. Ceram. Int. 45, 23561–23571 (2019).  https://doi.org/10.1016/j.ceramint.2019.08.065 CrossRefGoogle Scholar
  57. 57.
    H.O. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E.E. Altunsoy Guclu, O. Kilicoglu, M.I. Sayyed, Characterization of SiO2-PbO-CdO-Ga2O3 glasses for comprehensive nuclear shielding performance: Alpha, proton, gamma, neutron radiation. Ceram. Int. 45, 19206–19222 (2019).  https://doi.org/10.1016/j.ceramint.2019.06.168 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. I. El-Agawany
    • 1
  • E. Kavaz
    • 2
    Email author
  • U. Perişanoğlu
    • 2
  • M. Al-Buriahi
    • 3
  • Y. S. Rammah
    • 1
  1. 1.Physics Department, Faculty of ScienceMenoufia UniversityShebin El KoomEgypt
  2. 2.Physics Department, Faculty of ScienceAtaturk UniversityErzurumTurkey
  3. 3.Department of PhysicsSakarya UniversitySakaryaTurkey

Personalised recommendations