Advertisement

Applied Physics A

, 125:821 | Cite as

ZnO nanorods-gold nanoparticle-based biosensor for detecting hepatitis C

  • Glenda BiasottoEmail author
  • João Paulo C. Costa
  • Paulo I. Costa
  • Maria A. Zaghete
Article
  • 41 Downloads

Abstract

ZnO nanorods comprised of biosensors with Au nanoparticles are described in this study for detecting Hepatitis C virus (HCV). The biosensor device was constructed on a glass substrate with silver and gold electrodes. The ZnO nanorods were grown by microwave hydrothermal synthesis, and the Au nanoparticles were deposited by the sputtering method. The Au nanoparticles were deposited because of the right efficient of anti-HCV antibodies with cystamine and glutaraldehyde. The ZnO nanorods were evaluated using SEM images. The electrochemical biosensor shows a sensitive response to HCV with a detection limit of 0.25 μg/μL. The proposed sensor characteristics of high specificity, good reproducibility and remarkable stability will provide a sensitive, selective, and convenient approach for the detection of HCV.

Notes

Acknowledgements

The financial support for this research project granted by the Brazilian research funding agencies FAPESP (2011/19561–7, 2013/07296–2) is gratefully acknowledged.

References

  1. 1.
    S.K. Arya, S. Saha, J.E. Ramirez Vick, V. Gupta, S. Bhansali, S.P. Singh, Recent advances in ZnO nanostructures and thin films for biossensor applications: review. Anal. Chim. Acta 737, 1–21 (2012)CrossRefGoogle Scholar
  2. 2.
    B. Hansen, Metodologia para produção de biossensores amperométricos enzimáticos utilizando polímeros condutores: caso polianilina. 2011 111 f. Dissertação (Mestrado em Engenharia)—Escola de Engenharia (Universidade Federal do Rio Grande do Sul, Porto Alegre, 2011), pp. 1–111Google Scholar
  3. 3.
    A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, H.O. Everitt, Excitonic fine structure and recombination dynamics in single crystalline ZnO. Phys. Rev. B. 70, 195207/1–195207/10 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)CrossRefGoogle Scholar
  5. 5.
    E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9, 34544–34586 (2017)CrossRefGoogle Scholar
  6. 6.
    S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Advances 9, 8778–8881 (2019)CrossRefGoogle Scholar
  7. 7.
    Q. Choo, G. Kuo, A. Weiner, L. Overby, D. Bradley, M. Houghton, Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–365 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    D.R. Taylor, S.T. Shi, M.M. Lai, Hepatitis C virus and interferon resistance. Micro. Infect. 2, 1743–1756 (2000)CrossRefGoogle Scholar
  9. 9.
    C. Souvignet, O. Lejeune, C. Trepo, Interferon-based treatment of chronic Hepatitis C. Biochimie 89, 894–898 (2007)CrossRefGoogle Scholar
  10. 10.
    J.M. Vrolijk, R.J. Knegt, B.J. Veldt, H. Orlent, S.W. Schalm, The treatment of Hepatitis C: history, presence and future. Neth. J. Med. 62, 76–82 (2004)Google Scholar
  11. 11.
    D.H. Spach, Hepatitis C diagnostic testing. Hepatitis C, https://www.hepatitisc.uw.edu/go/screening-diagnosis/diagnostic-testing/core-concept/all. Accessed 11 Nov 2017 (2015)
  12. 12.
    D.R. Gretch, Diagnostic tests for hepatitis C. Hepatology 26, 43–47 (1997)CrossRefGoogle Scholar
  13. 13.
    S. Erensoy, Diagnosis of Hepatitis C Virus (HCV) infection and laboratory monitoring of its therapy. J. Clin. Virol. 21, 271–281 (2001)CrossRefGoogle Scholar
  14. 14.
    A.M. Majid, D.R. Gretch, Current and future Hepatitis C virus diagnostic testing: problems and advancements. Microbes Infect. Amst. 4, 1227–1236 (2002)CrossRefGoogle Scholar
  15. 15.
    World Hepatitis Alliance. Diagnosis. https://www.hepatite.org.br/homologacao/hepatite/diagnostico.html. Accessed 7 Nov 2019
  16. 16.
    F. R. Kenfe, Método imunocromatográfico para pesquisa do anticorpo em triagem ou diagnóstico da hepatite C: desenvolvimento e aplicação clínica. 2012. 254 f. Tese (Doutorado em Biociências e Biotecnologia aplicadas à Farmácia) - Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista, Araraquara, (2012) 1–254Google Scholar
  17. 17.
    Sprague Electric Company (Massachussets), M. P. Pechini, N. Adams, Method of preparing lead and alcaline earth titanates and niobates and coating method using the same to form a capacitor. US 3330697 (1967)Google Scholar
  18. 18.
    D. Tang, R. Yuan, Y. Chai, Ultrasensitive electrochemical imunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal. Chem. 80, 1582–1588 (2008)CrossRefGoogle Scholar
  19. 19.
    M.J. Li, X.F. Dai, Z.M. Liu, P.X. Cai, Y. Bai, A Hepatitis C electrochemical immunosensor based on thionine covalently bound to self-assembled monolayer. Fenxi Huaxue Huaxue 33, 1701–1704 (2005)Google Scholar
  20. 20.
    C. Ma, G. Xie, W. Zhang, M. Liang, B. Liu, H. Xiang, Label-free sandwich type of immunosensor for Hepatitis C virus core antigen based on the use of gold nanoparticles on a nanostructured metal oxide surface. Microchim. Acta 178, 331–340 (2012)CrossRefGoogle Scholar
  21. 21.
    C. Ma, M. Liang, L. Wang, H. Xiang, Y. Jiang, Y. Li, G. Xie, MultisHRP-DANN-coated CMWNTs as signal label for an ultrasensitive Hepatitis C virus core antigen electrochemical immunosensor. Biosens Biolectron. 47, 467–474 (2013)CrossRefGoogle Scholar
  22. 22.
    M. Liang, L. Wang, C.X. Ma, M.J. Zhang, G.M. Xie, Sandwich immunoassay for hepatitis C virus non-structural 5A protein using a glassy carbon electrode modified with an Au-MoO3/chitosan nanocomposite. Anal. Lett. 46, 1241–1254 (2013)CrossRefGoogle Scholar
  23. 23.
    M.L. Moraes, L.R. Lima, R.R. Silva, M. Cavicchioli, S.J. Ribeiro, Immunosensor based on immobilization of antigenic peptide NS5A-1 from HCV and silk fibroin in nanostructured films. Langmuir 29, 3829–3834 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LIEC, Institute of ChemistrySão Paulo State University-UNESPAraraquaraBrazil
  2. 2.School of Pharmaceutical SciencesSão Paulo State University-UNESPAraraquaraBrazil

Personalised recommendations