Applied Physics A

, 125:842 | Cite as

Improving the photoelectrical conversion efficiency of silicon solar cells using ZnO:Al/porous silicon double antireflective layers

  • Ekram A. Wahabaalla
  • E. M. El-MenyawyEmail author
  • T. Abdallah
  • G. M. Youssef


In this work, porous silicon (PS) layers are performed on the front side of \({\text{n}}^{ + } {\text{p}}\) wafer via electrochemical etching technique (etching times of 15 and 25 min), using isopropanol as solvent, followed by covering with Al-doped ZnO (AZO) films prepared by sol–gel spin-coating method. AZO/PS double layers are found to have incomparable photoluminescence and reflectance characteristics required for the use as antireflection. The structural, optical properties of PS, AZO and AZO/PS have been investigated. The results show that the energy bandgap of PS layer is higher than that of nonporous Si and increases slightly with increasing the etching time. X-ray diffraction shows that the prepared AZO films have nanostructure character with hexagonal structure. The optical properties of AZO films are studied in terms of measuring the transmittance and reflectance over wavelength range 200–2500 nm. Using these parameters, the absorption coefficient and refractive index of AZO films are calculated and the related parameters are estimated. AZO films deposited on PS/\({\text{n}}^{ + } {\text{p}}\) exhibit low reflectance compared to \({\text{n}}^{ + } {\text{p}}\) and AZO/\({\text{n}}^{ + } {\text{p}}\) systems. The improvement of the solar cells performance due to the effect of porosity and AZO films deposition are investigated in which the solar cells parameters are evaluated and discussed.



  1. 1.
    G. Smestad, M. Kunst, C. Vial, Photovoltaic response in electrochemically prepared photoluminescent porous silicon. Sol. Energy Mater. Sol. Cells 26, 277–283 (1992)CrossRefGoogle Scholar
  2. 2.
    A. Richter, P. Steiner, F. Kozlowski, W. Lang, Current-induced light emission from a porous silicon device. IEEE Electron. Device Lett. 12, 691–692 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    A. Janshoff et al., Macroporous p-type silicon Fabry−Perot layers. Fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 120, 12108–12116 (1998)CrossRefGoogle Scholar
  4. 4.
    G. Willeke, H. Nussbaumer, H. Bender, E. Bucher, A simple and effective light trapping technique for polycrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 26, 345–356 (1992)CrossRefGoogle Scholar
  5. 5.
    A. Maldonado, Indium-doped zinc oxide thin films deposited by chemical spray starting from zinc acetylacetonate: effect of the alcohol and substrate temperature. Sol. Energy Mater. Sol. Cells 82, 75–84 (2004)CrossRefGoogle Scholar
  6. 6.
    R. Herino, Porosity and pore size distributions of porous silicon layers. J. Electrochem. Soc. 134, 1994 (1987)CrossRefGoogle Scholar
  7. 7.
    L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    E. Abdur-Rahman, I. Alghoraibi, H. Alkurdi, Effect of isopropyl alcohol concentration and etching time on wet chemical anisotropic etching of low-resistivity crystalline silicon wafer. Int. J. Anal. Chem. 2017, 1–9 (2017)CrossRefGoogle Scholar
  9. 9.
    W.Y. Ou et al., Effects of IPA on texturing process for mono-crystalline silicon solar cell in TMAH solution. Mater. Sci. Forum 685, 31–37 (2011)CrossRefGoogle Scholar
  10. 10.
    P.K. Singh, R. Kumar, M. Lal, S.N. Singh, B.K. Das, Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol. Energy Mater. Sol. Cells 70, 103–113 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Ju et al., The effect of small pyramid texturing on the enhanced passivation and efficiency of single C–Si solar cells. RSC Adv. 6, 49831–49838 (2016)CrossRefGoogle Scholar
  12. 12.
    K.J. Rao, K. Mahesh, S. Kumar, A strategic approach for preparation of oxide nanomaterials. Bull. Mater. Sci. 28, 19–24 (2005)CrossRefGoogle Scholar
  13. 13.
    H. Cai et al., The effects of porous silicon on the crystalline properties of ZnO thin films. J. Phys. Chem. Solids 70, 967–971 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    B.V. Shrisha, S. Bhat, D. Kushavah, K.G. Naik, Hydrothermal growth and characterization of Al-doped ZnO nanorods. Mater. Today Proc. 3, 1693–1701 (2016)CrossRefGoogle Scholar
  15. 15.
    T. Jannanea et al., Sol-gel Aluminum-doped ZnO thin films: Synthesis and characterization. J. Mater. Environ. Sci. 8, 160–168 (2017)Google Scholar
  16. 16.
    K.A. Salman, K. Omar, Z. Hassan, Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers. Sol. Energy 86, 541–547 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    B. Efafi, S.S. Mousavi, M.H.M. Ara, B. Ghafari, H.R. Mazandarani, A method for optimizing the electrical conductivity of Al:ZnO TCO films. Mater. Lett. 195, 52–54 (2017)CrossRefGoogle Scholar
  18. 18.
    G.M. Youssef, M.A. Farag, Investigation of size and band gap distributions of Si nanoparticles from morphology and optical properties of porous silicon layers formed on a textured n+p silicon solar cell. Int. J. Semicond. Sci. Technol. 6, 1–12 (2016)Google Scholar
  19. 19.
    M.A. Butturi, M.C. Carotta, G. Martinelli, L. Passari, G.M. Youssef, A. Chiorino, G. Ghiotti, Effects of ageing on porous silicon photoluminescence: correlation with FTIR and UV–Vis spectra. Solid State Commun. 101, 11–16 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    K.A. Salman, Z. Hassan, K. Omar, Effect of silicon porosity on solar cell efficiency. Int. J. Electrochem. Sci. 7, 376–386 (2012)Google Scholar
  21. 21.
    N. Suzuki, Y. Sakka, Y. Yamauchi, Sci. Technol. Adv. Mater. 10, 025002 (2009)CrossRefGoogle Scholar
  22. 22.
    I.M. Ibrahim, S.I. Sharhan, F.T. Ibrahim, Sensing behavior of CuO-doped ZnO/PS nanoparticles. Mater. Lett. 157, 57–62 (2015)CrossRefGoogle Scholar
  23. 23.
    H. Lee, E. Lee, S. Lee, Investigation of nano-porous silicon antireflection coatings for crystalline silicon solar cells. IEEE Nanotechnology Materials and Devices Conference, pp. 340–341 (2006).Google Scholar
  24. 24.
    O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38(1–3), 1–126 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    S. Sarkar, S. Patra, S.K. Bera, G.K. Paul, R. Ghosh, Rectifying properties of sol–gel synthesized Al:ZnO/Si (N–n) thin film heterojunctions. Physica E 46, 1–5 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  27. 27.
    H.M. Zeyada, M.M. El-Nahass, I.K. El Zawawi, E.M. El-Menyawy, Characterization of 2-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol- 4-ylimino)-2-(4-nitrophenyl) acetonitrile and ZnO nano-crystallite structure thin films for application in solar cells. EPJ Appl. Phys. 49, 10301 (2010)CrossRefGoogle Scholar
  28. 28.
    P. Raghu, N. Srinatha, C.S. Naveen, H.M. Mahesh, B. Angadi, Investigation on the effect of Al concentration on the structural, optical and electrical properties of spin coated Al:ZnO thin films. J. Alloy. Compd. 694, 68–75 (2017)CrossRefGoogle Scholar
  29. 29.
    M.M. El-Nahass, A.A. Atta, H.E.A. El-Sayed, E.F.M. El-Zaidia, Structural and optical properties of thermal evaporated magnesium phthalocyanine (MgPc) thin films. Appl. Surf. Sci. 254, 2458–2465 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    C. Guillén, J. Herrero, Structural, optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates. Mater. Chem. Phys. 112, 641–644 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Tauc, A. Menth, States in the gap. J. Non Cryst. Solids. 8–10, 569–585 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    M.M. El-Nahass, E.M. El-Menyawy, Thickness dependence of structural and optical properties of indium tin oxide nanofiber thin films prepared by electron beam evaporation onto quartz substrates. Mater. Sci. Eng. B 177, 145–150 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, A. Ates, Photovoltaic solar cell properties of CdxZn1− xO films prepared by sol–gel method. Int. J. Hydrog. Energy. 34, 5201–5207 (2009)CrossRefGoogle Scholar
  34. 34.
    B. Sarma, D. Barman, B.K. Sarma, AZO (Al:ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide. Appl. Surf. Sci. 479, 786–795 (2019)ADSCrossRefGoogle Scholar
  35. 35.
    F. Opoku, K.K. Govender, C.G.C.E. Van Sittert, P.P. Govender, Understanding the mechanism of enhanced charge separation and visible light photocatalytic activity of modified wurtzite ZnO with nanoclusters of ZnS and graphene oxide: From a hybrid density functional study. New J. Chem. 41, 8140–8155 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Bandyopadhyay, G.K. Paul, R. Roy, S.K. Sen, S. Sen, Mater Chem Phys 74, 83 (2002)CrossRefGoogle Scholar
  37. 37.
    E.M. El-Menyawy, Electrical and photovoltaic properties of Gaussian distributed inhomogeneous barrier based on tris(8-hydroxyquinoline) indium/p-si interface. Mater. Sci. Semicond. Process. 32, 145–151 (2015)CrossRefGoogle Scholar
  38. 38.
    Z. El Jouad, L. Barkat, N. Stephant, L. Cattin, N. Hamzaoui, A. Khelil, M. Ghamnia, M. Addou, M. Morsli, S. Béchu, C. Cabanetos, M. Richard-Plouet, P. Blanchard, J.C. Bernède, Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction. J. Phys. Chem. Solids. 98, 128–135 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    G.M. Youssef, M.M. El-Nahass, S.Y. El-Zaiat, M.A. Farag, Effect of porosity on the electrical and photoelectrical properties of textured n+p silicon solar cells. Mater. Sci. Semicond. Process. 39, 457–466 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ekram A. Wahabaalla
    • 1
  • E. M. El-Menyawy
    • 2
    Email author
  • T. Abdallah
    • 1
  • G. M. Youssef
    • 1
  1. 1.Physics Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  2. 2.Solid-State Electronics Laboratory, Physics Research Division, Solid-State Physics DepartmentNational Research CentreGizaEgypt

Personalised recommendations