Advertisement

Applied Physics A

, 125:828 | Cite as

Fabrication and optical properties of dichroic polarizing films based on poly(vinyl alcohol)-heteropolyacid nanocomposites

  • Oleg N. TretinnikovEmail author
  • Natalya I. Sushko
Article
  • 27 Downloads

Abstract

We report on a new type of poly(vinyl alcohol)(PVA)-based dichroic polarizing films whose visible dichroism is due to long-chain linear polyenes, –(CH=CH)n–, formed in the course of acid-catalyzed thermal dehydration of the polymer. The distinguishing feature of these films is that the solid acid catalyst (12-tungstophosphoric acid, TPA) is used instead of the liquid ones. Thin PVA films with embedded TPA nanoparticles were fabricated by solution casting technique. Subsequent stretching and annealing of these PVA/TPA nanocomposites produced PVA–polyene/TPA dichroic polarizing films with the thickness below 10 µm. Transmission electron microscopy, Fourier-transform infrared spectroscopy, and UV–Vis spectroscopy techniques were used to characterize the films at various stages of preparation. The fabricated polarizing films showed polarization efficiency exceeding 94% and transmittance higher than 40% in the visible range. The polarizing properties of the films did not deteriorate upon prolonged exposures to hot humid air (60 °C, 90% RH) and high temperature (90 °C). The nanocomposite polarizing film proposed in this study may have application potential in thin and flexible optoelectronic devices that must operate under harsh environmental conditions.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Aslam, M.A. Kalyar, Z.A. Raza, Polym. Eng. Sci. 58, 2119 (2018)CrossRefGoogle Scholar
  2. 2.
    T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, G. Borodi, Ceram. Int. 44, 10478 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Loste, J.M. Lopez-Cuesta, L. Billon, H. Garay, M. Save, Prog. Polym. Sci. 89, 133 (2019)CrossRefGoogle Scholar
  4. 4.
    O. Elkalashy, E. Sheha, Appl. Phys. A 124, 549 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Ma, X. Ye, B. Jin, Displays 32, 49 (2011)CrossRefGoogle Scholar
  6. 6.
    T. Nagatsuka, K. Ichimura, Y. Ito, M. Yamahara, T. Toyooka, The Liquid Crystal Display Story (Springer, Tokyo, 2014), pp. 81–116Google Scholar
  7. 7.
    M.H. Han, W.S. Lyoo, J. Appl. Polym. Sci. 115, 917 (2010)CrossRefGoogle Scholar
  8. 8.
    E.J. Shin, W.S. Lyoo, Y.H. Lee, J. Appl. Polym. Sci. 123, 672 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Donelan, Inf. Disp. 32, 8 (2016)Google Scholar
  10. 10.
    S. Goto, M. Miyatake, Y. Saiki, S.I.D. Symp, Digest 47, 510 (2016)Google Scholar
  11. 11.
    S. Pan, J.Y. Ho, V.G. Chigrinov, H.S. Kwok, A.C.S. Appl, Mater. Interfaces 10, 9032 (2018)CrossRefGoogle Scholar
  12. 12.
    R. He, E. Oh, Y. Ye, P. Wen, K.U. Jeong, S.H. Lee, X.D. Li, M.H. Lee, Polymer 176, 51 (2019)CrossRefGoogle Scholar
  13. 13.
    H.J. Kim, W.B. Jung, H.S. Jeong, H.T. Jung, J. Mater. Chem. C 5, 12241 (2017)CrossRefGoogle Scholar
  14. 14.
    J.J. Cael, G. Trapani, Macromol. Symp. 154, 45 (2000)CrossRefGoogle Scholar
  15. 15.
    J.S. Kim, D.W. Kim, J.H. Kim, J.S. Shin, (Samsung SDI Co.). U.S. Patent Application 14/901,417, May 26, 2016Google Scholar
  16. 16.
    R.R. Birge, M.Z.L. Zgierski, Serrano-Andres, B.S. Hudson, J. Phys. Chem. A. 103, 2251 (1999)CrossRefGoogle Scholar
  17. 17.
    K. Knoll, R.R. Schrock, J. Am. Chem. Soc. 111, 7989 (1989)CrossRefGoogle Scholar
  18. 18.
    B.E. Kohler, I.D.W. Samuel, J. Chem. Phys. 103, 6248 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    L.M. Ai, W. Feng, J. Chen, Y. Liu, W.M. Cai, Mater. Chem. Phys. 109, 131 (2008)CrossRefGoogle Scholar
  20. 20.
    C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot, Inorg. Chem. 22, 207 (1983)CrossRefGoogle Scholar
  21. 21.
    O. Dmitrenko, W. Huang, T.E. Polenova, L.C. Francesconi, J.A. Wingrave, A.V. Teplyakov, J. Phys. Chem. B 107, 7747 (2003)CrossRefGoogle Scholar
  22. 22.
    I.V. Kozhevnikov, Chem. Rev. 98, 171 (1998)CrossRefGoogle Scholar
  23. 23.
    P. Vazquez, L. Pizzio, C. Caceres, M. Blanco, H. Thomas, E. Alesso, L. Finkielsztein, B. Lantano, G. Moltrasio, J. Aguirre, J. Mol. Catal. A Chem. 161, 223 (2000)CrossRefGoogle Scholar
  24. 24.
    D. Varisli, T. Dogu, G. Dogu, Chem. Eng. Sci. 62, 5349 (2007)CrossRefGoogle Scholar
  25. 25.
    E. Tsukuda, S. Sato, R. Takahashi, T. Sodesawa, Catal. Commun. 8, 1349 (2007)CrossRefGoogle Scholar
  26. 26.
    T.H. Kang, J.H. Choi, Y. Bang, J. Yoo, J.H. Song, W. Joe, J.S. Choi, I.K. Song, J. Mol. Catal. A Chem. 396, 282 (2015)CrossRefGoogle Scholar
  27. 27.
    O.N. Tretinnikov, N.I. Sushko, A.B. Maly, J. Appl. Spectrosc. 82, 925 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    K. Maruyama, H. Akahoshi, M. Kobayashi, Y. Tanizaki, Bull. Chem. Soc. Jpn. 58, 2923 (1985)CrossRefGoogle Scholar
  29. 29.
    C. Tanaka, M. Shiozawa, M. Nishinohara, (Unitika Ltd.). U.S. Patent 5,071,906, Dec. 10 (1991)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations